A high-energy capacitor discharge ignition system

This completely new capacitor discharge ignition system has been designed from the ground up to provide a high energy "multiple spark discharge" to cope with engines which have very high RPM rates. It is intended particularly for use with two stroke engines, high performance four strokes and older vehicles.

Twenty or so years ago, Capacitor Discharge Ignition (GDI) was the acknowledged "solution for automotive enthusiasts wanting a high energy ignition circuit. GDI gave a really hot spark which would fire virtually any spark plug no matter how fouled or grotty it was. Tens of thousands of enthusiasts installed them on their cars and hence forward swore by them as the greatest innovation system since Karl Benz thought of the horseless...
Fig. 1: these three circuits show the three types of ignition circuit. Fig.1(a) is the original points-based system. Fig.1(b) shows a typical CDI system which uses a DC-to-DC inverter to charge a capacitor which typically has a value of 1uF. Each time the switch points in the distributor open, it fires an SCR to dump the capacitor’s charge into the coil primary winding. Fig.1(c) shows the arrangement of our new CDI system. It has a DC-to-DC inverter with a regulated 300V DC output which charges up a 1uF capacitor. Instead of using an SCR to dump the capacitor’s charge into the coil, it uses a pair of Mosfets which are depicted as S1, a single pole double throw switch.

Cross-fire is caused by the capacitance between adjacent spark plug leads. The capacitance between the leads causes the fast-rising voltage from the coil to be coupled into the adjacent leads and thereby can deliver unwanted sparks in other cylinders.

Cross-fire can cause severe engine damage and sounds similar to pinging.

Ultimately, CDI fell into disuse for mainstream cars because of the introduction of lean fuel mixtures in an attempt to meet rising anti-pollution standards. The very fast and very short spark of CDI wasn’t all that good at igniting lean mixtures. Car manufacturers introduced transistor-assisted ignition with long spark durations to ensure that lean mixtures did burn properly. There was one CDI design which attempted to overcome the lean mixture drawback and that was the so-called "multiple spark discharge" system. However it was a complex design which never really caught on.

These days, there is no modern car with an engine management system which uses CDI, to our knowledge. Whether they are single coil, multi-coil or direct-fire systems, they are all variants of the tried and true transistor assisted ignition (TAI) system. So why design a new CDI?

At SILICON CHIP, we have tended to disparage CDI systems for years, knowing that our very popular high-energy TAI system has a well-earned reputation for reliability. Gut some readers were not about to be put off. They wanted a CDI design and they wanted it for a number of reasons. They wanted them for two-stroke and four-stroke motors on motor bikes, outboards and Go-Karts. And they wanted them for older cars which don’t have lean mixtures and which can be particularly hard, if not impossible, to start when the ignition system gets wet. Old Mini Coopers and 850s are legendary in this regard.

Some readers also wanted a CDI for racing applications where multiple spark discharge systems still have a keen following.

With all of these reasons being cited, who were we to say that all these people were wrong? So we went back to the data books and put on our thinking caps. A new CDI design had to be a distinct improvement over the 20-year old designs which did have their fair share of drawbacks. Like what, for example?

First, many CDIs had very high voltages applied to the ignition coil, as much as 500V or 600V in some cases. They did this to avoid the inevitable fall-off in spark energy as the engine RPM rose. This very high coil voltage had the drawback of often causing internal breakdown in ignition coils, it made the cross-fire problem significantly worse than it would have
been with a lower coil voltage and it put considerably more stress on the ignition leads. So design aim number one was to set the coil voltage to a much more moderate level of about 300V.

Second, because the DC-DC inverters of the time used relatively slow bipolar transistors (eg, 2N3055s), the inverter frequency was typically only 2kHz. This typically sets an upper limit on the maximum spark rate of about 300 to 400 sparks per second, as the inverter needs a couple of cycles of operation after each discharge in order to recharge the dump capacitor.

The 2kHz inverter operation was quite audible too and could often be heard through car radios. So the new design would use Mosfets in the inverter and would operate at above 20kHz to make it inaudible.

Third, CDIs used an SCR (silicon controlled rectifier) to discharge the dump capacitor and these are typically rated for an AC supply frequency of 400Hz maximum. While the SCRs will operate at higher frequencies, it is an unspecified condition and it ultimately also sets a limit on the maximum spark rate. That effectively rules out using an SCR in the new design.

Fourth, and a rather serious draw-
back this on, some CDI systems would not operate. This meant that while the battery might be able to slowly crank the engine, the CDI's inverter would not start and hence there would be no spark. In other words, just when you most wanted the CDI to work, it would not be on the job.

Another factor which limited the inverter operating frequency was the speed of the rectifier diodes. High speed fast recovery diodes were expensive and so, even if the inverter could have run much faster, the standard rectifier diodes could not have handled the high frequency output.

**Applications**

While we have addressed all the above disadvantages, the drawback of potential cross-fire remains even though we have reduced the high voltage to 300V. Therefore, we do not recommend using the system on six cylinder and V8 engines unless you can improve the lead dress of the spark plug leads so that each lead is more widely separated from its neighbour.

Nor do we recommend using this CDI on any car with an engine management computer. We take the attitude that the factory designed ignition system will always be optimum for the particular car.

On the other hand, if you have an older car with factory electronic ignition there is no reason why this CDI system should not be a satisfactory substitute, particularly if the original module has failed and is expensive to replace.

The new CDI system can be connected to distributors with conventional points, Hall effect or reluctor pickups. It is capable of operation to very high engine speeds, much higher than even racing engines. For example, it can run as high as 30,000 RPM in a 4-cylinder engine. This figure is so high that it's academic but it does indicate that full spark energy is maintained over the entire RPM range of any practical engine.

All the other features of the new design are summarised in the features and specifications panels elsewhere in this article. However, we do need to explain one of the key features and that is "multiple spark discharge".

Produced just one spark each time the points opened, the multi-spark discharge (MSD) CDI was able to produce several sparks in quick succession each time the points opened. Our new design incorporates this feature and produces up to 10 sparks each time a spark plug is to be fired, depending on the engine speed. This feature can be disabled so that the CDI...
Fig. 5: the circuit caters for distributors with (a) points; (b) Hall Effect sensors; or (c) reluctor pickups.

produces just two sparks for each cylinder firing, regardless of engine speed.

Now let us have a look at some of the details of the new design. Fig.1(a) shows the schematic diagram of the conventional Kettering ignition system which has been used on cars for over 60 years. It comprises an ignition coil which has its primary winding connected to the battery supply with a switch at the negative side. The switch can be a conventional set of points or a switching transistor, as used in most modern ignition systems. When the switch is closed, current builds up in the primary winding with the ultimate value limited by the internal resistance of the coil and a ballast resistor, if used. This current is usually around 3 to 5 amps.

When the switch opens, the resulting collapse of the coil's magnetic field causes the secondary winding to produce a high voltage to fire the spark plug. As the engine speed rises, the current has less time to build up in the coil primary and so inevitably the spark energy is reduced. Modern transistor assisted ignition systems get around this problem by using dwell extension, lower inductance coils or more than one ignition coil.

Fig.1(b) shows a typical CDI system which uses a DC-to-DC inverter to charge a capacitor which typically has a value of 1uF. Each time the switch points in the distributor open, it fires an SCR to dump the capacitor's charge into the coil primary winding. The poor old coil gets such a belt that it produces a much higher voltage in the secondary and fires the spark plug.

Fig.1(c) shows the arrangement of our new CDI system. It has a DC-to-DC inverter with a regulated 300V DC output which charges up a 1uF capacitor. Instead of using an SCR to dump the capacitor's charge into the coil, it uses a pair of Mosfets which are depicted as S1, a single pole double throw switch. The capacitor charges up via the coil to 300V when S1 is in position A and discharges through the coil when the switch is in position B.

Thus each time a spark plug is to be fired, two sparks are produced, one with positive polarity and one with negative polarity. With a simple change to the timing circuitry controlling the two Mosfets, the CDI can be made to produce more than two sparks by repetitively charging and discharging the dump capacitor during each spark plug firing period.

The oscilloscope waveforms in Fig.3 show the primary coil voltage when producing four sparks (top waveform). Note the 284V negative excursion for the first and third sparks and the 292V positive excursion for the second spark. The lower trace is the tachometer output signal which was used to trigger the oscilloscope.

Table 1 shows the multi-spark information for four, six and eight cylinder engines. Here we show the RPM versus the number of sparks produced. As you can see, the number of sparks ranges from as many as six sparks per firing at 600 RPM in a 4-cylinder engine down to two sparks per firing at 15,000 RPM, again in a 4-cylinder engine.

Circuit description

Fig.2 shows the circuit diagram of the Multi-Spark CDI. It can be split into two separate sections, each using an IR2155 self-oscillating half bridge Mosfet driver. IC1 and Mosfets Q1 & Q2 comprise the 12V DC to 300V DC inverter. IC2 and Mosfets Q6 & Q7 charge and discharge the dump capacitor via the ignition coil primary and provide the multiple spark feature.

IC1 oscillates at about 22kHz as set
by the 33kohm resistor between pins 2 and 3 and the .001uF capacitor from pin 3 to ground. Two complementary outputs at pins 5 & 7 alternately switch Mosfets Q1 & Q2 to drive the centra-tapped primary winding of transformer T1. With Q1 on, the full 12VDC is applied to the top half of the transformer primary winding. Because of the transformer coupling to the second primary winding, the lower half of the transformer primary winding also has 12V across it. Similarly, when Q2 turns on the 12V is also impressed across the top primary winding. The resulting waveform on the primary is stepped up by the secondary winding.

Q1 & Q2 have internal avalanche protection. Should the switch off transient across them reach 60V, the internal zener diode will safely quench the spike voltage. The 1011 resistors in series with the gates of the Mosfets are used to slow their switching speed and thus reduce the interference which would otherwise be induced into the vehicle's electrical system.

Two 10(iF MKT capacitors are used to decouple the DC supply to transformer T1. They effectively bypass the supply lead inductance so that the full 12V supply is delivered to the, transformer at the high switching rate. Inductor L1 is connected in series with the supply to prevent 22kHz switching currents from appearing on the vehicle's electrical supply. The .01uF capacitor on the 12V input is there for the same reason.

The stepped up secondary voltage of T1 is full-wave rectified by high speed diodes D2-D5 and the resulting 300VDC is filtered with a 1uF 275 VAC capacitor.

Voltage feedback trickery
As described so far, the circuit does not have any means of maintaining a constant 300V DC output and so variations in the battery voltage and spark rate would inevitably cause the high voltage DC output to vary over a fairly wide range which would be undesirable. However, the IR2155 Mosfet driver has no inbuilt means of providing voltage regulation. Therefore, we have to trick the circuit into maintaining a more or less constant voltage.

The voltage feedback comprises four 75V zener diodes ZD1-ZD4 which are connected in series so that they begin to conduct at 300V. When current flows through the zeners they switch on transistor Q3 via a 10kohm base resistor. When transistor Q3 turns on, it pulls pin 1 of ICl from close to +12 V down to around +6V and this tricks the IC into activating its internal undervolt-age cutout circuit (threshold +8.4V) which switches both pins 7 and 5 low. This stops the Mosfets from driving transformer T1 and this situation is maintained until the zeners stop conducting; ie, when the high voltage supply drops back below 300V. Transistor Q3 then switches off and ICl resumes normal operation. Thus, the output voltage is stabilised at 300V while Q3 turns the oscillator on and off at a rate dependent on the load current drawn from the 300V supply and the actual DC supply voltage.

Circuit feeds itself
Three 331dl resistors in series feed current from the 300V output back to the supply pins of ICl and an internal

<table>
<thead>
<tr>
<th>RPM</th>
<th>NO. Of 1 Sparks</th>
<th>Spark Duration (Crankshaft Degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>600</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>800</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>1000</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>1500</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>2000</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>3000</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>6000</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>10,000</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>800</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>300</td>
<td>CYL 4</td>
<td>14</td>
</tr>
<tr>
<td>450</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>600</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>750</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>1125</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>1500</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>2250</td>
<td>6</td>
<td>29</td>
</tr>
<tr>
<td>4500</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>7500</td>
<td>2</td>
<td>15</td>
</tr>
</tbody>
</table>
Here the new Multi-Spark CDI is shown mounted in the engine compartment of a Mitsubishi Sigma. Note the long parallel run of the spark plug leads. We suggest that the spacing between these leads should be increased to reduce any possibility of cross-fire.

Zener limits the resulting voltage to 15V. With +15V present at pins 1 & 8 of ICl, diode D1 is reverse biased and therefore the IC no longer draws current from the +12V battery line. The idea behind this to make sure that the circuit will run even with a very flat battery. Hence the circuit will start with as little as 9V from the battery and then will continue to run even if the battery drops down to 5V.

This could make all the difference when you have a sick battery which can barely crank the engine over or if you have to push start the car.

The 300V supply also feeds IC2, the second IR2155. Note that IC2 is connected to operate in a different fashion to ICl. In this case, the drain (D) of Q6 is connected to the 300V supply which is at a much higher potential than the +15V at pin 1 of IC2. For Q6 to fully turn on, its gate (G) must be raised above the drain by several volts.

This is achieved using diode D6 and capacitor C1.

Initially, IC2 starts with a 15V supply derived from the 300V rail, as mentioned above. Q7 is the first to be switched on and it pulls one side of capacitor C1 low. C1 then charges to the +15V supply via D6 and Q7.

When Q7 turns off and Q6 turns on, Q6 pulls pin 6 of IC2 up to the 300V rail and so pin 8 is jacked up above +300V by the 15V across C1. C1 maintains the voltage between pins 7 and 8 until next recharged via D6 and Q7. (Note that pins 6, 7 & 8 of the IR2155 are floating outputs which can be shifted to 600V above the pin 4 ground).

C1 needs to be relatively large at 100uF since it can be called upon to keep its charge for up to 100ms during slow cranking of the motor. The totem-pole output of Mosfets Q6 and Q7 drives the ignition coil primary via the 1uF 275VAC capacitor C2.

Diode D7 is included to prevent pin 6 from going much below the pin 4 ground while D7 itself is current limited by the series 22ohm resistor. The 22kohm resistor between pin 7 and the source of Q6 ensures that this Mosfet is held off when there is initially no supply between pins 8 and 7. The 22R gate resistors slow the turn on and turn off times for Q6 and Q7 to limit transients when switching the 1uF 275VAC capacitor.

Multi-sparking

Pins 2 and 3 of IC2 are connected to an assortment of resistors, diodes and capacitors and these are instrumental in providing the multi-spark operation. These components comprise a timer and an astable (oscillator) connection. The astable oscillator is formed by the 180kohm resistor at pin 2 and the .0047uF capacitor at pin 3.

The 10kohm resistor between pin 3 and the .0047uF capacitor is there to prevent excess current into this pin when driven by the monostable part.
of the circuit. The only other difference to the normal astable mode is the addition of diode D11 and the 180kohm resistor in series. This ensures a longer discharge time for the .0047uF capacitor via one 180kohm resistor and a shorter charge time via both 180kohm resistors when D11 is forward biased.

Note that the .0047uF capacitor is only tied to ground when transistor Q4 is switched on via the trigger circuit from either points, Hall effect or reluctor signals. Capacitor C3 is also connected to the collector of Q4. Initially, when Q4 is off, C3 is discharged and held at the pin 1 supply voltage (+15V) via the 13kohm resistor at Q4’s collector and the 33kohm resistor at D10’s anode. This last resistor pulls pin 3 well above the upper threshold (7/3rd the pin 1 supply) via D10. Pin 2 goes low but the .0047uF capacitor cannot be discharged and so IC2 does not oscillate; so Q7 is off and Q6 is on (if is supply voltage across CI).

When Q4 switches on, the anode of D10 is pulled low via C3. Thus, the 33k resistor is effectively out of the oscillation circuit and so the .0047uF capacitor is charged and discharged via the components at pin 2 as previously discussed. Q6 and Q7 now switch on and off alternately, so the coil is fired repetitively via C2.

C3 charges via the 33k resistor and when this voltage reaches the upper threshold of pin 3’s input, D10 conducts and stops IC2 from oscillating again. The circuit thus remains with Q6 on and Q7 off until triggered again. Note that, at high RPM, Q4 is off for less time than it takes C3 to recharge via the 33k resistor and switch off IC2’s oscillation. The in-stant this transistor switches off, IC2 stops oscillating since C3 is immediately pulled high. This is a fail-safe condition to prevent sparks designated for one cylinder from accidentally firing the next cylinder in sequence.

The trigger circuit also drives transistor Q5 to provide a low voltage (+12V) tachometer output. This is necessary since a tacho connected to the coil would otherwise give false readings.

Fig.4 shows some more waveforms which demonstrate the circuit performance. The top trace shows the voltage measured at the source of Q6 when driving the ignition coil while the lower trace is the tachometer output which indicates that the input spark rate is at 1kHz (60,000 rpm). Note that capacitor C2 charges up to the full 300V (308V shown) before firing into the coil on the negative edge of the lower trace. This means that the circuit can deliver the full
spark energy, even at this excessively high rpm.

Disabling multi-spark operation
If you wish, the multi-spark feature can be easily disabled by (1) removing C3,D10,DII, the two 180k resistors and the 33kfl and 13ka resistors; and (2) installing a 180ka resistor in place of the 33k resistor and a link in place of D10. This causes IC2 to produce a single 0.5ms pulse to switch on Q7. This fires the coil in one direction when Q7 switches on and in the other direction when Q6 switches on.

A Metal Oxide Varistor (MOV1) is connected across the coil to quench the high voltage transient which will occur if the coil is left open circuit on the secondary. Leaving the coil output open circuit can cause it to break down internally and this quickly leads to failure.

In addition, there is provision on the PC board to use two 1uF capacitors to drive the coil. Two 680K resistors are connected in series across C2 to discharge it should the coil become disconnected from the circuit. This improves safety since a 1uF capacitor charged to 300V can produce a nasty shock.

Trigger circuits
Fig.5 shows the alternative circuits provided for points. Hall effect and reluctor triggering. These are all included on the PC board. The points circuit is easy enough and we have provided for distributors which have one or two sets of points. Both pairs of points have a 47R 5W resistor to provide a "wetting current". This current keeps the points clean and thereby provides more reliable operation. Diode D12 or D13 feeds the respective points signal into transistor Q4.

The two-points facility provides for twin-cylinder engines with two coils or for rotary engines which have two plugs per chamber.

The Hall effect circuit has power supplied via a 100R resistor. The 820R resistor is the pullup for the internal open collector transistor. Diode D12 supplies the high-going signal to Q4.

The reluctor circuit comprises a 10k load across the pickup coil to gather with a 470pF noise suppression capacitor. Transistor Q8 is biased on using a 5.1V zener diode. The circuit is designed to trigger after the reluctor signal goes negative. The 0.0022uF capacitor is used to speed up the switch off action of Q8 while the 10k pullup resistor on Q8's collector provides the signal to Q4 via diode D12.

Fig.6 shows the reluctor output (lower trace) and the resulting source voltage of Q8 with no coil connected. Note that the coil fires on the negative edge of the reluctor waveform.

Construction
The Multi-Spark Capacitor Dis-
charge Ignition is constructed on a PC board which is coded 05309971 and measures 112 x 144mm. It is housed in a diecast case measuring 171 x 121 x55mm.

Begin assembly by checking the PC board against the published pattern. There should not be any shorts or breaks between tracks. Make any repairs as necessary. Note that the PC board requires two semicircular cutouts on the sides to fit into the recommended case. The corners should also be rounded off and small notches are need to give clearance for the vertical channels in the diecast case.

Make sure the PC board fits into the case before starting assembly. Other types of diecast cases with multiple integral ribs on the sides cannot be

### Conventional Points Pickup

![Conventional Points Pickup Diagram](image)

**Table 2: Capacitor Codes**

<table>
<thead>
<tr>
<th>Value</th>
<th>IEC Code</th>
<th>EIA Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.47μF</td>
<td>470nF</td>
<td>474</td>
</tr>
<tr>
<td>0.15μF</td>
<td>150nF</td>
<td>154</td>
</tr>
<tr>
<td>0.12μF</td>
<td>120nF</td>
<td>124</td>
</tr>
<tr>
<td>0.1μF</td>
<td>100nF</td>
<td>104</td>
</tr>
<tr>
<td>0.01μF</td>
<td>10nF</td>
<td>103</td>
</tr>
<tr>
<td>0.0047μF</td>
<td>4n7</td>
<td>472</td>
</tr>
<tr>
<td>0.0022μF</td>
<td>2n2</td>
<td>222</td>
</tr>
<tr>
<td>.001μF</td>
<td>1n0</td>
<td>102</td>
</tr>
<tr>
<td>470pF</td>
<td>470p</td>
<td>471</td>
</tr>
</tbody>
</table>

*Fig. B: This diagram shows the trigger components for a Hall effect distributor.*

**4-Band Code (1%)** blue grey black brown white brown grey black orange brown brown grey black orange green blue black red brown yellow violet black red brown orange orange black red brown orange orange black red brown red red black red brown brown orange black red brown brown black black brown red brown red red brown grey red brown brown orange white brown brown red red brown brown black brown brown red black brown brown black brown black brown black brown black brown black brown black gold brown brown black black gold brown

**5-Band Code (1%)** blue grey black orange brown brown grey black orange green blue black red brown yellow violet black red brown orange orange black red brown orange orange black red brown red red black red brown brown orange black red brown brown black black brown red brown red red brown grey red brown brown orange white brown brown red red brown brown black brown brown red black brown brown black brown black brown black brown black brown black black gold brown brown black black gold brown

*SEPTEMBER 1997*
used since the Mosfets need to be bolted to a flat surface. Fig. 7 shows the component overlay for the PC board with trigger input circuitry for a reluctor distributor. Fig. 8 shows the different trigger components for a Hall effect distributor while Fig. 9 shows the trigger components for a conventional points distributor.

You can start the board assembly by inserting the PC stakes at the external wiring connection points and then installing the wire links. Note that there are two links that run beneath the inverter transformer (T1). This done, install the resistors and use the colour code table and your multimeter to check each value.

When inserting the diodes and zeners, take care with their orientation and be sure to place each type in the correct position. Install the ICs and transistors, taking care to orient them as shown. The Mosfets are oriented with their metal flanges towards the edge of the PC board and are seated as far down on the board as they will go. Be sure to install the correct type in each location.

The capacitors can be installed next. The accompanying table shows the value codes which will be printed on each component. The electrolytic capacitors must be oriented with the correct polarity. Once the capacitors are in, install the varistor (MOV1). The battery input filter toroid core (LI) is wound with 12 turns of 1 mm enamelled copper wire. Ensure that the wire ends are stripped of insulation before soldering it into place. The toroid is affixed to the PC board using a screw and nut with an insulating bush to locate the screw and protect the winding.

**Winding the transformer**

Transformer T1 is wound as shown in the diagram of Fig. 10. Start by terminating the 0.25mm enamelled copper wire on pin 7 as shown. Neatly wind on 360 turns and insulate between each winding layer with insulation tape. Terminate the winding on pin 8.

The primary windings are wound together (bifilar) side-by-side. Terminate the 0.63mm enamelled copper wires at pins 2 and 4 as shown, then wind on 13 turns and terminate on pins 11 and 9 respectively. Check that pin 2 connects to pin 11 and pin 4 connects to pin 9, using a multimeter on the "Ohms" range. Finish the windings with a layer of insulation tape.

The ferrite cores are inserted into the bobbin and secured with the clips or a cable tie. Insert and solder the transformer into the PC board with the orientation shown in Fig. 7.

Next, insert the PC board into the case and mark the positions for the Mosfet mounting holes on the side panel. Remove the PC board and drill out these holes and two holes at each end for the cord grip grommets. Also drill a hole for the earth lug screw. The holes for the Mosfet mounting must be deburred with a larger drill to prevent punch-through of the insulating washer.

Attach the PC board to the case with the supplied screws and secure each Mosfet to the case with a screw, nut, insulating washer and insulating bush. Fig. 11 shows the details. If you use a mica washer apply a smear of heatsink compound to the mating sur-
faces before assembly. Silicone rubber washers do not require heatsink compound. Use two washers each for Q6 and Q7. Check that the metal tabs of the Mosfets are indeed isolated from the case by measuring the resistance with a multimeter.

Finally, attach the wires for the supply, trigger input and coil output and secure them with the cordgrip grommet. The earth connection goes to a solder lug which is secured to the case.

You can test that the inverter operates by connecting the circuit to a 12 V 3A power supply. The voltage between the tab of Q6 and the case should be about 300V. Take care, however, since this voltage can cause a severe electric shock.

Installation

If you are using the existing points or a reluctor distributor, the CDI unit can be installed into the vehicle. Be sure to locate the CDI case in a position where air flows over it and make sure it is away from the exhaust side of the engine. It can be secured to the engine bay with self-tapping screws into the two diagonally opposite external securing points on the case.

Alternatively, you could use brackets. Wire up the positive connection to the positive 12V ignition, the negative wire to the chassis and the trigger input to the points or reluctor. The ignition coil requires a connection to both sides of the primary. Disconnect any other wires that are part of the original ignition system.

Note that the reluctor coil requires the correct polarity connection in order to give the correct spark timing. This is best determined by testing the lifTengine. If it does not fire, reverse the reluctor leads and try again.

You may find that with the CDI installed, the spark timing is little advanced, due to its fast rise time. If so, you may need to retard the static timing slightly to prevent pinging or a slightly rough idle.

When starting an engine fitted with this CDI, it is a good idea to turn on the ignition for one or two seconds before cranking the engine. This will give the circuit time to generate the 300VDC and fully charge the 100uF supply capacitor for ICl. • If you are going to install the CDI on an engine with two coils and two sets of points, you can use the trigger cir-
Fig. 14: this is the full-size etching pattern for the PC board.

Fig. 13: use this circuit to provide a tacho signal if your car has an impulse tachometer.

Hall effect distributor is a much better proposition. A Hall effect pickup does not suffer from any wear and tear and is unaffected by dirt. The Hall sensor recommended is the Siemens HKZ101 available from Jaycar Electronics. You must also obtain a rotating vane assembly to suit your distributor. These are available from automotive after-market retailers selling Bosch ignition systems. Make sure that you have one of these before purchasing the Hall sensor.

Fig. 12 shows how the Siemens Hall sensor should be installed to provide reliable triggering. The vane needs to penetrate the sensor by between 8mm and 11.5mm. The triggering point is between 0.1mm and 1.8mm from the centre line of the unit.

To install the sensor, first remove the distributor from the vehicle. To do this, rotate the engine until cylinder number 1 is at the firing point; this is indicated when the rotor button is aligned with the number 1 spark plug lead. With the distributor out of the engine, find the position where the points just open for the number 1 cylinder and mark the position on the distributor where the centre of the rotor is now positioned. This is the point where the Hall effect sensor’s output should go high.

Next, remove the rotor, points and capacitor plus ancillary components. The Hall sensor should be mounted near where the points were located so that there is sufficient lead length to exit from the distributor. The exact location for the Hall sensor is determined as follows.

Fit the vane assembly to the distributor and align the rotor with the marked firing point. The Hall sensor should now be positioned so that the leading edge of one of the metal vanes is about halfway through the slot. You will have to know the distributor rotation direction. Mark the position for the sensor, taking care to ensure that the vane will pass through the gap without fouling.

Note that Fig. 12 shows the configuration for a clockwise rotating distributor. Anticlockwise rotating distributors are timed as the vane enters the Hall sensor from the other side.

A suitable mounting plate can now be made to fit the Hall sensor onto the distributor advance plate. The mounting plate must be elevated so that the vane penetrates the Hall sensor by 8-

Hall effect trigger

While many readers will wish to use their original points/distributor setup in their initial installation, a circuit with the two points facility. The CDI can then drive both coils in parallel. Both coils will then fire simultaneously when each set of points open. This is more or less standard practice with racing rotaries.

If you do want to fire two coils simultaneously, you will probably need to add an extra 0.1uF 275VAC capacitor (C2). There is provision for this on the PC board.

SILICON CHIP
The Multi-Spark Capacitor Discharge Ignition system is housed in a diecast box which provides adequate heatsinking for the four Mosfets.

11.5mm. The Hall sensor is riveted to the adaptor plate through 3.5mm holes which are countersunk beneath the plate. The adaptor plate can then be secured to the advance plate using machine screws, nuts and washers. Try to take advantage of existing holes left where the points were mounted.

The leads from the Hall sensor should pass through the existing points lead grommet. Check that the vanes pass through the gap in the sensor without fouling and that the lead dress allows for full movement of the distributor advance plate.

Now reinstall the distributor in the engine, with the rotor pointing towards the number 1 cylinder firing point. Do a static timing check, with the engine set to E* when the vane is central to the Hall sensor.

Connect the Hall sensor leads to the CDI unit using suitable automotive connectors. Start the engine and use a timing light to set the spark timing.

**Tachometer connection**

The tachometer output signal is a 12V square wave which should be sufficient to trigger most electronic tachometers. For example, the tachometer featured in the August 1991 issue can be directly triggered without modification. If the signal does not work with your tacho, it may be an impulse type which requires a high voltage. The circuit shown in Fig. 13 should solve this problem.

As shown, this uses the primary of a 2851240VAC to 12VAC mains transformer to produce a high voltage pulse when switched via transistors Q1 & Q2. The coil voltage is limited by the .033uf capacitor connected between collector and emitter of Q2. SC

---

**Specifications**

<table>
<thead>
<tr>
<th>Spark energy</th>
<th>.45mJ Minimum of 2, (see Table 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of sparks per firing</td>
<td></td>
</tr>
<tr>
<td>Spark separation</td>
<td></td>
</tr>
<tr>
<td>Spark duration</td>
<td></td>
</tr>
<tr>
<td>Multiple spark duration</td>
<td></td>
</tr>
<tr>
<td>(add 200us for last spark)</td>
<td></td>
</tr>
<tr>
<td>Reluctor circuit sensitivity</td>
<td></td>
</tr>
<tr>
<td>Inverter operating frequency</td>
<td></td>
</tr>
<tr>
<td>Operating voltage</td>
<td></td>
</tr>
</tbody>
</table>