Order this document

by AN2183/D MOTOROLA R

digital dna-

Semiconductor Products Sector A N 2 183

Application Note

Using FLASH as EEPROM on the MC68HC908GP32

By Derrick H.J. Klotz
Field Applications Engineer
Toronto, Canada

Introduction

This application note describes a method for using the on-chip FLASH
memory of the MC68HC908GP32 as one would typically use EEPROM
(electrically erasable programmable read-only memory). For the
purposes of this application note, the FLASH memory that is
manipulated via this method is referred to as "FlashEE." It is expected
that the reader is somewhat familiar with the
MC68HC908GP32/08GP32 Technical Data book, Motorola document
order number MC68HC908GP32/H, as well as typical EEPROM device
usage.

In many projects, EEPROMs are used as nonvolatile storage for
calibration data, control information, data logging, etc. The FLASH
memory technology employed in the M68HC908 Family of
microcontrollers (MCU) is capable of being reprogrammed easily while
the application software is executing. Project cost savings can be
realized by simply using an appropriate section of the on-chip FLASH
memory as one would use an off-chip EEPROM device.

© Motorola, Inc., 2001

intelligence everywhere

Application Note

In order to verify the correct operation of the FlashEE routines, a test
program is included in this application note. This program demonstrates
how these routines would be integrated into a project. The test program
communicates with a host computer via a simple RS-232 connection in
order to facilitate testing. User programs that include the FlashEE
routines are free to implement them as one would commonly expect to
use EEPROM algorithms for various forms of data storage.

FlashEE Implementation

Specifications for the M68HC908 Family FLASH memory indicate a
program/erase cycle endurance of 10,000 cycles across the full
operating temperature range. This is typically more than sufficient for
most applications. However, this value can be mathematically elongated
by the number of times a small data block can fit within a FLASH erase

page.

It is important to note that the while the FLASH memory is “page”
erasable, itis, in fact, byte programmable. It's organization is configured
for efficient “row” programming, but any algorithm must write each
location on a byte-by-byte basis. There is no limit to the minimum
number of bytes that must be programmed within a row. But every time
a row is programmed, the high voltage charge pump must be enabled
and disabled, regardless of the number of bytes that are programmed.

A critical FLASH memory specification is the cumulative program high
voltage period. This is the maximum total time that a specific FLASH
program row is subjected to being programmed between erasures. The
technical data for the MC68HC908GP32 lists this maximum
specification as being 4 ms.

The subroutines herein are optimized to program relatively small blocks
of data sequentially within the FLASH memory, thereby minimizing the
total cumulative length of time spent programming. These subroutines

will only erase the FlashEE space when there is no more room for the

next data block. Each FLASH erase page consists of two program rows.
The FLASH erase page size for the MC68HC908GP32 is 128 bytes.

AN2183

2 MOTOROLA

ANZ2183

Application Note
FlashEE Implementation

If an example application uses a FlashEE data block size of four bytes,
then 32 program cycles of four bytes each will be performed prior to
executing a single erase cycle, at which point this would be considered
one complete program/erase cycle. Hence, in this example, the FlashEE
endurance would be calculated as being 320,000 program/erase cycles
(in other words, 10,000 x 32).

The high voltage program time used by the subroutines herein to
program four bytes is less than 150 us. Each program row would be
subjected to a program cycle 16 times (remember, two program rows
per erase page). This provides a cumulative time of less than 2.4 ms
(150 ps x 16), which is less than the maximum specification given.

The FLASH block protect register (FLBPR) points to the first FLASH
memory location to be protected. When programmed, every location
from that address to $FFFF will be protected from accidental erasure.
For this reason, it is easiest to assign the FlashEE sections to the very
beginning of the FLASH memory, assuming that the FLBPR may be
used to protect application code.

To simplify the FlashEE implementation, some essential guidelines have
been used, specifically:

* FlashEE data is written in blocks of multiple bytes.
« Each FlashEE data block fits within a single FLASH program row.

« The first FlashEE data block byte to be written cannot be equal
to $FF.

Programming only one byte is possible, but may result in application
code inefficiencies since an entire 128-byte FLASH erase page would
need to be reserved for each single byte of FlashEE.

If the data storage space requirement exceeds the size of a single
FLASH program row (i.e., more than 64 bytes on the
MC68HC908GP32), then the data will need to be split up over multiple
FlashEE sections, each occupying one FLASH erase page (i.e.,

128 bytes on the MC68HC908GP32). If multiple FlashEE sections are
used, they must be manipulated separately. This is demonstrated with
the test program provided.

MOTOROLA

Application Note

As part of a search algorithm, the software interrogates the first byte
location of each FlashEE data block to see if it is erased (i.e., $FF). For
this reason, when writing a new block of data, the first byte must not be
$FF. All subsequent data block locations have no restrictions on their
stored value.

Figure 1 shows the MC68HC908GP32 memory map and the space
occupied by two separate FlashEE sections (128 bytes each). Note that
the erased state of the FLASH memory is $FF and that the first 10
locations ($8000 to $8009) are not erased. This represents the current
state of FlashEE1 at the end of the example host test session shown in
Figure 2 and described later in this text.

As defined in the example provided, FlashEEL1 starts at address $8000
with a data block size of five bytes. FlashEE2 starts at address $8080
and has a data block size of seven bytes. Although reasonably obvious,
delineations are shown in Figure 1 that demonstrate that neither five nor
seven evenly fit into a FLASH program row that is 64 bytes in size. The
routines provided will store the appropriate data sequentially in the
respective FlashEE sections only up to the last complete available data
block space. As defined, FlashEE1 will never store a value in the last
four locations of its FLASH program row (i.e., locations $803C to $803F
and $807C to $807F will always be erased.) Similarly, the last byte in
each FLASH program row of FlashEE2 will also remain erased (i.e.,
locations $80BF and $80FF). A FlashEE section with a data block size
of 33 to 64 bytes inclusive will only fit the data into each FLASH program
row once, leaving the remaining locations erased.

The program files provided are:

« fl ashee. equ — FlashEE subroutine operational parameter
definitions

 fl ashee. asm— FlashEE subroutines
* eetest.asm— FlashEE test program

e gp32. equ — MC68HC908GP32 microcontroller definitions

AN2183

4 MOTOROLA

Application Note
FlashEE Implementation

FlashEE1 FlashEE2
0000 IO REGISTERS 8000 v 8040 FF 8080 FF 80C0 FF
0040 64 BYTES ool /[34 8041 FF 8081 FF 80C1 FF
8002 | [~ 56 8042 FF 8082 FF 80C2 FF
RAM 8003 78 8043 FF 8083 FF 80C3 FF
512 BYTES 8004 | [90 8044 FF 8084 FF 80C4 FF
0123F 8005 AR 8045 FF 8085 FF 80C5 FF
8006 BB 8046 FF 8086 FF 80C6 FF
8007, [CC 8047 FF 8087 FF 80C7 FF
8008 D 8048 FF 8088 FF 80C8 FF
8009 EE 8049 FF 8089 FF 80C9 FF
800A FF 804A FF 808A FF 80CA FF
8008 FF 804B FF 8088 FF 80CB FF
aogc FF 804C FF 808C FF 80CC FF
800D FF 804D FF 808D FF 80CD FF
800E FF 804E FF B08E FF 80CE FF
880F FF B04F FF 808F FF 80CF FF
8010 FF 8050 FF 8090 FF 80D0 FF
go11 FF 8051 FF 8091 FF 80D1 FF
012 FF 8052 FF 8092 FF 80D2 FF
AL 2 AR ED 8013 = 8053 FF 8093 FF 80D3 FF
18014 FF 8054 FF 8094 FF 80D4 FF
8015 FF 8055 FF 8005 FF 80D5 FF
/ 8016 FF 8056 FF 8096 FF 80D6 FF
807 FF 8057 FF 8097 FF 80D7 FF
8018 FF 8058 FF 8098 FF 80D8 FF
8019 FF 8059 FF 8099 FF 80D9 FF
801A FF 805A FF 809A FF 80DA FF
| 8018 FF 8058 FF 8098 FF 80DB FF
| 80iC FF 805C FF 809C FF 800C FF
801D FF 805D FF 809D FF 80DD FF
| TBOIE FF B05E FF 809E FF 80DE FF
801F FF 805F FF 809F FF 80DF FF
8000 FlashEET 8020 FF 8060 FF 80A0 FF 80E0 FF
8080 FlashEE2 8021 FF 8061 FF 80A1 FF 80E1 FF
8100 8022 FF 8062 FF 80A2 FF 80E2 FF
8023 FF 8063 FF 80A3 FF 80E3 FF
8024 FF 8064 FF 80A4 FF 80E4 FF
8035 FF 8065 FF 80A5 FF 80E5 FF
8026 \. [FF 8066 FF 80A6 FF 80E6 FF
8027 FF 8067 FF 80A7 FF 80E7 FF
8028 TF 8068 FF 80A8 FF 80E8 FF
8029 FF 8069 FF 80A9 FF 80E9 FF
802A FF 806A FF B0AA FF B0EA FF
802B = A FF 80AB FF 80EB FF
802C FF] > 806C FF 80AC FF 80EC FF
802D FF 896D FF 80AD FF 80ED FF
sl 00 802E FF 806E. [FF 80AE FF 80EE FF
32,256 BYTES 802F FF 806F [FF 80AF FF 80EF FF
8030 FF 8070 [<FF 8080 FF 80F0 FF
8031 FF 8071 R 8081 FF BOFT FF
8032 FF 8072 FF 80B2 FF 80F2 FF
8033 FF 8073 FF|" . 8083 FF 80F3 FF
8034 FF 8074 FF 80B4 FF 80F4 FF
8035 FF 8075 FF "B0B5 FF 80F5 FF
8036 FF 8076 FF 80B6 FF 80F6 FF
8037 FF 8077 FF 8087 \ [FF 80F7 FF
8038 FF 8078 FF 3088 FF 80FS FF
8039 FF 8079 FF 80B9 RE 80F9 FF
803A FF 807A FF 80BA FF 80FA FF
FEOD | CONTROL REGISTERS 803B FF 8078 FF 80BB FF 80FB FF
803C FF 807C FF 80BC FF 80FC FF
AND MONITOR ROM 803D FF 807D FF 80BD FF “B0FD FF
FFDC y— 803E FF 807E FF 80BE FF 80PE FF
FFFF 803F FE 807F FF 80BF FF 8OFF ~ | FF

Figure 1. MC68HC908GP32 Memory Map and FlashEE Implementation

ANZ2183

MOTOROLA 5

Application Note

flashee.equ Subroutines

Microcontroller
FLASH Memory
Parameters

FlashEE Data
Parameters

The FlashEE subroutines are tailored to the needs and operation
conditions of a specific application by modifying the parameters provided
in this file, which must be included near the top of the application
program file. To help avoid assembly language label naming conflicts, all
labels used in this file start with either "EE" or "Ram".

The parameters defined are grouped into three specific categories:
e Microcontroller FLASH memory parameters
* FlashEE data parameters

* Microcontroller bus frequency parameters

The specific sizes of the FLASH memory program row and erase page
are defined here (64 bytes and 128 bytes, respectively, for the
MC68HC908GP32). Also, the erased state of a FLASH byte is also
declared as $FF.

These parameters are initially defined as:

EE_Fl ashPage: equ 128
EE_Fl ashRow: equ 64
EE_Fl ashErased: equ $FF

The starting address of each FlashEE section is declared here. These

parameters are not directly used by the FlashEE subroutines. They are
passed forward by the application program when these subroutines are
called. For demonstration purposes, two separate FlashEE sections are
shown, although many more are possible.

The size of each FlashEE data block is also defined. Note that each
FlashEE section can have its own unique data block size.

AN2183

MOTOROLA

Microcontroller
Bus Frequency
Parameters

Application Note
flashee.asm Subroutines

The parameters for FlashEEL are initially defined as:

EE Start Addr1: equ $8000
EE Bl ockSi zel: equ 5

The parameters for FlashEE?2 are initially defined as:

EE Start Addr2: equ {EE_St ar t Addr 2+EE_FIl ashPage}
EE Bl ockSi ze2: equ 7

Note that the assembler will assign the label "EE_StartAddr2" with a
value of $8080.

The FlashEE subroutines employ delay loops that must be tuned to the
microcontroller bus frequency. The values for these parameters for a
bus frequency of 7.3728 MHz are provided in the software listing. If a
different bus frequency is desired, then these parameters must be
changed in accordance with the formula provided, specifically:

Value = ((delay in us) x (bus frequency in MHz) — 2) + 3
As an example, a delay of 30 ps with a bus frequency of 7.3728 MHz
would result in the following:
RamDelay30 = ((30) x (7.3728) —2) + 3=73.06 074

For a 7.3728-MHz bus frequency, the required parameters are initially
defined as:

RamDel ay5: equ 12
RamDel ay10: equ 24
RamDel ay30: equ 74
RamDel ay50: equ 122

flashee.asm Subroutines

ANZ2183

This file contains the FlashEE subroutine source code and must be
included in the application program file. These subroutines only use local
variables on the stack and, hence, do not require any other predefined
global variable space resources. The maximum available stack space

MOTOROLA

Application Note

EERead

EEErase

requirement is 80 bytes. To help avoid assembly language label naming
conflicts, all labels used start with either "EE" or "Ram". The flow
diagrams of these routines (with the exception of the Dump utility, due to
its simplicity) are provided in Figure 3 through Figure 8.

The available FlashEE routines are:
« EERead — Read the current valid FlashEE data block
« EEErase — Erase an entire FlashEE section

« EEWrite — Write a new FlashEE data block

This subroutine is called with the 16-bit index register H:X pointing at the
starting address of the desired FlashEE section and the accumulator
preloaded with that FlashEE section’s data block size. The FlashEE
section is sequentially scanned, block by block, until an erased FLASH
byte (i.e., $FF) is found occupying the first location of a data block or the
end of the section is reached.

This subroutine returns with the 16-bit index register H: X pointing to the
first location of the most recent FlashEE data block and the data in that
location stored in the accumulator. The calling routine should check the
accumulator value for $FF to see if any data has been stored in the
FlashEE. Refer to Check Read subroutine in the eetest.asm. This
check should only be needed when an EERead is performed before the
very first EEWrite.

This subroutine is used to erase the contents of a FlashEE section. It is
called with the 16-bit index register H:X pointing at the starting address
of the desired FlashEE section. The value in H:X is returned unchanged.
Regardless of bus frequency, this subroutine will execute in just over
one millisecond. (Specifically, at a bus frequency of 7.3728 MHz, this
subroutine executes in about 1096 ps.)

Note that this subroutine will copy and execute a program in RAM. This
Is required due to the fact that erasing FLASH locations cannot be
performed by code being executed from the FLASH memory. While
executing code from RAM, all interrupts are disabled.

AN2183

MOTOROLA

EEWTrite

Application Note
eetest.asm Subroutines

This subroutine requires two address pointers when called. The 16-bit
starting address of the desired FlashEE section must be saved on the
stack just prior to calling this subroutine. In addition, the 16-bit index
register H:X must point to the first byte of a source data block, which is
typically a buffer located in RAM. As well, the accumulator is preloaded
with the FlashEE data block size. This subroutine will then copy the
required number of bytes sequentially from the source location into the
FlashEE.

As a point of reference toward understanding the speed of this
subroutine, consider using a data block of 16 bytes and a bus frequency
of 7.3728 MHz. The best case programming time would be about 644 ps.
The worst case would involve writing the data block into the FlashEE
with no available room. This requires that the FlashEE first be erased
prior to programming the data. In this given scenario, this subroutine
executes in about 1772 s, of which just over 1000 ps is due to the
FlashEE erasure procedure.

Note that this subroutine will copy and execute a program in RAM. This
Is required due to the fact that programming FLASH locations cannot be
performed by code being executed from the FLASH memory. While
executing code from RAM, all interrupts are disabled.

eetest.asm Subroutines

ANZ2183

This file provides an executable demo program used to test and verify
the use of the FlashEE subroutines and files. Note that the files

fl ashee. equ, fl ashee. asm and gp32. equ are incorporated in this
test program via the "include" assembler directive.

A simple user interface is provided via the on-chip serial
communications interface (SCI) and industry standard RS232
communications with a host computer executing a simple terminal
program. The serial bit rate is configured for 115.2 kbaud.

The software implements four single ASCII character commands (case
insensitive) and provides the ability to test and interrogate two separate

MOTOROLA

Application Note

FlashEE sections. Each command is followed by either "1" or "2" to
indicate the desired FlashEE section.

The commands are:
* R — Read FlashEE
» E — Erase FlashEE
* W — Write FlashEE
e D — Dump FlashEE

An example of the host terminal display during a simple test session
using FlashEE1 with a block size of five bytes is shown in Figure 2. The
program implements a default prompt to the user of FIl ashEE>.

The first user command is d1, or "dump the contents of FlashEE1." All
128 bytes are printed out in a format that is relatively easy to read. Note
that at this point, the entire FlashEE section is erased (i.e., all locations
contain $FF). The second command issued is r 1, or "read the most
recent FlashEE1 data block." Since FlashEEL1 is erased, a message is
sent indicating that no data is currently stored in FlashEE1.

Next, the user has requested that a block of data be written into
FlashEE1 with wl. The program responds with an equal sign (=) and
then accepts the correct number of hexadecimal values (five in total for
FlashEE1). The user verifies that the data has been programmed
correctly by first using the r 1 command, and secondly with d1 which
clearly indicates where the data has been stored.

The user enters another block of data with the next wl command. The
following d1 entry shows that the new data has been correctly stored in
the next data block location. And the nextr 1 command confirms that the
read subroutine correctly identifies which is the most recent data.

Continuing with this method, the demo program provided was used to
test and verify the correct operation of the FlashEE subroutines.

AN2183

10 MOTOROLA

Application Note
eetest.asm Subroutines

Fl ashEE>d1

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
Fl ashEE>r1 Fl ashEE erased

Fl ashEE>w1=12 34 56 78 90

Fl ashEE>r1 12 34 56 78 90

Fl ashEE>d1

12 34 56 78 90 FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
Fl ashEE>wl= aa bb cc dd ee

Fl ashEE>d1

12 34 56 78 90 AA BB CC DD EE FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
Fl ashEE>r1 AA BB CC DD EE

Fl ashEE>_

Figure 2. Simple Host Terminal Test Session Display

Read FlashEE (R) After entering the single character R, followed by either "1" or "2", the
program will respond by outputting the most recent data byte block. In
the example shown, the firsttime R is entered and the FlashEE is erased
as indicated by the software’s response. Subsequent examples show
the current data block data being reported back to the host.

Erase FlashEE (E) This command will directly execute the EEErase subroutine and erase
the selected FlashEE section.

ANZ2183

MOTOROLA 11

Application Note

Write FlashEE (W) After entering the single character W, followed by either "1" or "2", the
program will respond by prompting the user to enter a data block string
of data. Each entry must be a valid hexadecimal value and is echoed
back as typed. Entering a non-hexadecimal value results in the process
being stopped with the default prompt being output. After entering the
required number of bytes, the FlashEE is programmed with the data
provided.

Dump FlashEE (D) This command will output the current contents of the selected FlashEE
section.

Summary

Most projects using the M68HC908 Family of microcontrollers requiring
nonvolatile data storage that is application software programmable need
not incur the added cost of external EEPROM devices. A method for
using the on-chip FLASH memory for such application purposes has
been demonstrated with this application note.

AN2183

12 MOTOROLA

Application Note

Summary
POWER-ON
RESET
\
INITIALIZE
CGM, RAM, AND SCI
\/
OUTPUT PROMPT AND WAIT
FOR USER INPUT
READ FlashEE (R) Rg,EE?EIORr:VIIEE
COMMAND? as >
' PROCESS [
ERASE FlashEE (E) PERFORM
COMMAND? ERASE FlashEE —>
PROCESS
WRITE FlashEE (W) PERFORM N
COMMAND? WRITE FlashEE >
PROCESS A
DUMP FlashEE (D’) PERFORM N
COMMAND? DUMP FlashEE >
' PROCESS /
OUTPUT
UNKNOWN COMMAND
RESPONSE
Figure 3. eet est. asmSoftware Flow Diagram
AN2183
MOTOROLA 13

Application Note

PERFORM
READ FlashEE
PROCESS

PERFORM FIND FIRST

Figure 4.

\4

ERASED FLASH
LOCATION PROCESS

Y IS FIRST LOCATION

OF FIRST ROW
ERASED?

IS THERE
ROOM FOR ANOTHER
DATA BLOCK?

SAVE CURRENT
LOCATION POINTER
TEMPORARILY

y

ADVANCE LOCATION POINTER
TO START OF
SECOND PROGRAM ROW

IS FIRST LOCATION
OF SECOND ROW
ERASED?

PERFORM FIND FIRST
ERASED FLASH
LOCATION PROCESS

-

RESTORE PREVIOUS
LOCATION POINTER

ADJUST LOCATION POINTER

BACK ONE
DATA BLOCK SIZE

y

RETURN WITH
FIRST DATA BYTE

FROM BLOCK

EXIT
PROCESS

Read FlashEE Software Flow Diagram

AN2183

14

MOTOROLA

Application Note
Summary

PERFORM COPY
ERASE FlashEE > ERASE FLASH ROUTINE
PROCESS ONTO STACK

SAVE
CONDITION CODE REGISTER
AND DISABLE INTERRUPTS

y

EXECUTE
ERASE FLASH ROUTINE
IN RAM

| FesheEPAGE e
CONDITION CODE REGISTER >
LOCATION POINTER PROCESS

EXECUTE SET ERASE BIT IN FLCR,
ERASE FLASH ROUTINE > READ FLBPR
IN RAM AND WRITE TO POINTED PAGE

WAIT > 10 s,
SET HVEN BIT IN FLCR
AND WAIT > 1 ms

A

CLEAR ERASE BIT
INFLCR
AND WAIT > 5 ps,

\
CLEAR HVEN BIT IN FLCR EXIT
AND WAIT > 1 ps, PROCESS

Figure 5. Erase FlashEE Software Flow Diagrams

ANZ2183

MOTOROLA 15

Application Note

PERFORM
WRITE FlashEE
PROCESS

\J

PERFORM FIND FIRST
ERASED FLASH
LOCATION PROCESS

Figure 6.

IS THERE
ROOM FOR ANOTHER
DATA BLOCK?

ADVANCE LOCATION POINTER

TO START OF
SECOND PROGRAM ROW

\

PERFORM FIND FIRST
ERASED FLASH
LOCATION PROCESS

IS THERE
ROOM FOR ANOTHER
DATA BLOCK?

PERFORM
ERASED FlashEE
PROCESS

A4

COPY
PROGRAM FLASH ROUTINE
ONTO STACK

y

PREPARE
SOURCE AND DESTINATION
POINTERS

PREPARE
BLOCK SIZE COUNTER

\

SAVE
CONDITION CODE REGISTER
AND DISABLEINTERRUPTS

y

EXECUTE
PROGRAM FLASH
ROUTINE IN RAM

y

RESTORE
CONDITION CODE REGISTER

Write FlashEE Software Flow Diagram

EXIT
PROCESS

AN2183

16

MOTOROLA

EXECUTE
PROGRAM FLASH
ROUTINE IN RAM

\J

SET PGM BIT IN FLCR,
READ FLBPR
AND WRITE TO POINTED PAGE

A

WAIT > 10 s,
SET HVEN BIT IN FLCR
AND WAIT > 5 pis

\

/

COPY DATABYTE FROM
SOURCE TO DESTINATION
AND WAIT 30-40 ps

\i

ADVANCE
SOURCE AND DESTINATION
POINTERS

Y

DECREMENT
BLOCK SIZE
COUNTER

'

IS BLOCK
SIZE COUNTER
ZERO?

CLEAR PGM BIT
IN FLCR
AND WAIT > 5 pis

A

CLEAR HVEN BIT
IN FLCR
AND WAIT > 1 s

Application Note
Summary

| EXIT
™| PROCESS

Figure 7. Write FlashEE RAM Routine Software Flow Diagram

ANZ2183

MOTOROLA

17

Application Note

PERFORM FIND FIRST
ERASED FLASH
LOCATION PROCESS

INITIALIZE

BLOCK COUNTER

Y

IS CURRENT
LOCATION
ERASED?

y

SUBTRACT BLOCK SIZE
FROM BLOCK COUNTER

IS BLOCK

COUNTER
NEGATIVE?

ADVANCE

LOCATION POINTER

Y

RETURN WITH
BLOCK COUNTER

EXIT
PROCESS

Figure 8. Find First Erased FlashEE Data Block Software Flow Diagram

AN2183

18

MOTOROLA

flashee.equ

Application Note
flashee.equ

EEE R S I R I I R O I I

This file provides

Fil e nane:
Last Edit Dat e:

I ncl ude Fil es:
Assenbl er:
Tar get :

Docunent ati on:

Aut hor :
Fi rst Rel ease:

Update History:

ES 1.0 15-Jun-01

Not es:
- This file is
the programfil
"EE" or "Rant.

- The "Fl ashEE

the target appl

descri bed herein;
; ri ghts of others.

L D SR I N N N N N S D S S . N N N N R SN SN N N S S S N N I S S o T N T T N N N N T N N

ANZ2183

Fl ash as EEPROM - MC68HC908GP32

LR I O I S

Thi s program has been specially tailored towards the MC68HC908GP32.

LR I O I S R R I S

LIRS I O S R I R I S

LR I O S O I

declared at the start of this listing nust be tailored to the specific needs of

LR I O I S O R I R S

Mot orol a reserves the right to make changes without further notice to any product
herein to inprove reliability, function, or design. Modtorola does not assunme any
liability arising out of the application or use of any product, circuit, or software

Copyright (c) Mdtorola, 2001

the application specific parameters for the FlashEE routines.

fl ashee. equ Current Rel ease Level: 1.0
15-Jun-01 Cl assi fication: ES
gp32. equ : MC68HC908GP32 MCU definitions

P&E s CASMD8Z Ver si on: 3.16

MC68HCI08GP32

MC68HC908GP32/H Rev 3
Motorola M crocontrol l er Techni cal Data

DHJ Kl ot z
15-Jun-01

Aut hor Description of Change

DHIK Initial rel ease.

intended to be included within another source programalong with

e "flashee.asnf. Al labels used in this file start with either

Dat a Paraneters" and "M crocontrol | er Bus Frequency Paraneters”

ication prior to using the prograns herein.

neither does it convey any |license under its patent rights nor the
Mot or ol a products are not designed, intended, or authorized for

L A S I N N N N S I S D S N N R SN N N N N I S S R R B I N N B N I S I T R I

MOTOROLA

19

Application Note

* use as conponents in systens intended for surgical inplant into the body, or other

* applications intended to support life, or for any other application in which the

* failure of the Mdtorol a product could create a situati on where personal injury or

* death may occur. Should Buyer purchase or use Mtorola products for any such

* i ntended or unaut horized application, Buyer shall indemify and hold Mtorola and
P * its officers, enployees, subsidiaries, affiliates, and distributors harm ess agai nst
P all clainms, costs, damages, and expenses, and reasonable attorney fees arising out

*

*

*

*

*

*

*

of, directly or indirectly, any claimof personal injury or death associated with
such uni ntended or unaut horized use, even if such claimalleges that Mdtorola was
negli gent regardi ng the design or manufacture of the part.

Motorol a and the Mtorola |ogo are regi stered tradenmarks of Mdtorola Ltd.

L B I S T S R N . N

’
EE R I O I S I I R I S S

Mrcontroller FLASH h/Eerry Paran-eters LR I S T S R I R S I

*
*
;* These paraneters reflect the specific FLASH menory characteristics of the MC68HC908GP32.
* The Fl ashEE software can be easily ported to other MC68HCO08 family nenbers by changi ng
;* the paraneters listed here.
*

EE_F| ashPage: equ 128 ; Flash Erase Page size

EE_FI ashRow: equ 64 ; Flash Program Row si ze

EE_Fl ashErased: equ $FF ;. Flash erased state

* Fl aShEE Data Paran-eters IR R R E RS EEEERESEREEREEE SRS EEREEEEREEEEEREEEEEEEEEEEEEEREEEEEEEEEREEEEEESE]
. %

;* By default, the very first Flasherase page is assigned for FlashEE usage, so that the

*

; rest of the Flash nenory can be protected via the Flash Bl ock Protect Register (FLBPR).
- %

EE_Start Addr1l: equ $8000 ; starting address of 1st Fl ashEE
EE_Start Addr2: equ {EE_St art Addr 1+EE_FI ashPage} ; starting address of 2nd Fl ashEE

- %

*

:* The data bl ock size for each FlashEE section is defined here. Each nust be | ess than or
;* equal to "EE_Fl ashRow'

- %

EE_BIl ockSi zel: equ 5 ; data bl ock size for 1st Fl ashEE
EE_BIl ockSi ze2: equ 7 ; data bl ock size for 2nd Fl ashEE

Mcrocontroller BUS Frequency Paran-eters R R R I R S

Software delay |oops are initially calculated for a 7.3728 Mz bus frequency. For other
frequenci es, the follow ng paraneters nmust be nodified accordingly.

*
*
*
*
*
;* Mcrosecond del ay paraneter calculationis ((N x bus clock) - 2) / 3
* For exanpl e,

* if bus = 7.3728 MHz, then 1Ous -> ((10us x 7372800 - 2)) / 3 = 23.9 = 24

*

*

*

*

As a check, use ((Mx 3) +2) / bus clock
For exanpl e,

; if bus = 7.3728 MHz, then for N=24 -> ((24 x 3) + 2) [/ 7372800 = 10us
- %
RamDel ay5: equ 12 ; 5us del ay paraneter
RamDel ay10: equ 24 ; 10us del ay paraneter
RanmDel ay30: equ 74 ; 30us del ay paraneter
RanmDel ay50: equ 122 ; 50us del ay paraneter
AN2183

20 MOTOROLA

Application Note
flashee.asm

flashee.asm

EEE R R S R R I I

Fl ash as EEPROM - MC68HC908GP32
Copyright (c) Mdtorola, 2001

LR I O I S R O I R

This file provides the |low | evel assenbly routines for using the Flash as EEPROM
This program has been specially tailored towards the MC68HC908GP32.

LR I O I I S S R I

; Fil e nane: fl ashee. asm Current Rel ease Level: 1.0
; Last Edit Dat e: 15-Jun-01 Cl assi fication: ES
; I ncl ude Files: gp32. equ : MCB68HCO08GP32 MCU definitions

; fl ashee. equ . FlashEE paraneters

; Assenbl er: P&E s CASMD8Z Ver si on: 3.16

; Tar get : MC68HC908GP32

; Docunent ati on: MC68HCO08GP32/H Rev 3

Motorola M crocontrol l er Techni cal Data

LR I O S R I S

Aut hor : DHJ Kl ot z
Fi rst Rel ease: 15-Jun-01

Update History:

Rev Dat e Aut hor Description of Change

ES 1.0 15-Jun-01 DHIK Initial rel ease.

LR I O S R I S

Not es:
- This file is intended to be included wi thin another source program al ong with
the Fl ashEE paraneter file "flashee.equ". Al labels used in this file start with
either "EE' or "Rani.

- The "Fl ashEE Data Paraneters" and "M crocontrol |l er Bus Frequency Paraneters"
declared in the include file "flashee.equ" nust be tailored to the specific needs
of the target application prior to using the prograns herein.

- Cal | abl e subroutines are:
EERead : returns with H X pointing to first FlashEE data bl ock entry
EEWite : programs FlashEE with data bl ock pointed to by H X
EEErase : erases entire FlashEE space pointed to by H X

L R I S R R S S R S T N N B . N R N S N T S S A T S S R N . S S N N S S N S S T
L R I S T R B S N R S . S N B N N N N N S S N N N S S D T I S S N N N R S R T S S R I

ANZ2183

MOTOROLA 21

Application Note

EEE R S I I I I R
’

*
*
*
*
*
*
*
*
*

-

)
*

)
*

)
*

)
*

)
*

)
*

)
*

)
*

)

-

)
*

L I T I S R T R R N N S N

’
*

EE

Mot orol a reserves the right to make changes without further notice to any product
herein to inprove reliability, function, or design. Modtorola does not assune any

liability arising out of the application or use of any product, circuit, or software
described herein; neither does it convey any license under its patent rights nor the
rights of others. Mdtorola products are not designed, intended, or authorized for
use as conponents in systens intended for surgical inplant into the body, or other

applications intended to support life, or for any other application in which the
failure of the Mdtorol a product could create a situati on where personal injury or
death may occur. Should Buyer purchase or use Mtorola products for any such

i ntended or unaut horized application, Buyer shall indemify and hold Mtorola and

its officers, enployees, subsidiaries, affiliates, and distributors harm ess agai nst

all clainms, costs, damages, and expenses, and reasonable attorney fees arising out
of, directly or indirectly, any claimof personal injury or death associated with
such uni ntended or unaut horized use, even if such claimalleges that Mdtorola was
negli gent regardi ng the design or manufacture of the part.

Motorol a and the Mtorola |ogo are regi stered tradenmarks of Mdtorola Ltd.

LR I O I S R I S

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Read Fl ashEE Bl ock Subrouti ne =================—===—=—==—==—=—==========
Thi s subroutine expects H: X to be pointing to the first Fl ashEE page | ocation and returns
with H X pointing to the nost recent FlashEE data. The Fl ashEE data bl ock size is passed
forward in ACC.
Calling convention:

| dhx #EE St art Addr

| da #EE Bl ockSi ze

jsr EERead
Ret urns: H: X -> Fl ashEE bl ock address

ACC = first FlashEE data byte
Changes: everyt hing
Read:

Find first erased | ocation wthin FlashEE page.

Check for roomw thin first FlashEE row.

If the entire rowis erased, then return with H X unchanged. If the next avail able
erased FlashEE block is within the first programrow, then return pointing to the
bl ock just before it.

psha : save Fl ashEE data bl ock size

pshx : save Fl ashEE address | sb on stack

bsr EEFi ndFi r st ; go find next free location

cpx 1,sp : check if start of 1st rowis 1st bl ank |ocation
beq EERead3 oexit if so

cnp 2,sp : check if there’'s room for another data bl ock
bpl EERead?2 oexit if so

Check for roomw thin second Fl ashEE row.

AN2183

22

MOTOROLA

Application Note
flashee.asm

; If the second row is erased, then return pointing to the last block in the first row
; O herwi se, return pointing to the |last used block in the second row

t xa : save current address |sb
pul x : restore FlashEE address |sb
ai x #EE_F| ashRow ; H: X now points to second program row
psha ; save previous address |sb on stack
| da , X : check if first |ocation
cnp #EE Fl ashEr ased . is erased
bne EERead1 ; skipif so
pul x ; else, restore previous FlashEE address |sb
pshx ; put back on stack for clean exit
bra EERead?2 ; and exit
EERead1:
| da 2,sp ; get FlashEE data bl ock size
bsr EEFi ndFi r st ; go find next free location
EERead?2:
t xa ; perform
sub 2,sp ; 16-bit subtraction
t ax ; in order
pshh ; to adj ust
pul a ; Fl ashEE poi nter
sbc #0 ; backwar ds
psha ; one data bl ock
pul h ; si ze
EERead3:
ais #2 ; deall ocate stack usage
| da , X ; get first FlashEE data byte
rts ; return
o * RAM Execut abl e Fl ashEE Page Er ase Subrouti ne ================—===—=—=—=—=—=—=—=—=—=—=—=—=—==—=—===—======
- %
;* This subroutine will erase the Flash nenory page that is being pointed to by H X
;* This subroutine is copied into and executed from RAM and expects to be called via
;Y "jsro,x".
;*
Rantr aseEE:

; Retrieve page address.

psha ; save previous CCR on stack
| da {Rankr aseSi ze}, x ; get nsb
| dx {Ranktr aseSi ze+1}, x : and | sb of address
psha ; put mnsb
pul h ;. into HREG
; Step 1:
; Set ERASE, read the Flash Bl ock Protect Register and wite any data into Fl ash page.
| da #{ ERASE} ; set ERASE control bit
sta flcr ;in Flash Control Register
| da flbpr ; read from Flash Bl ock Protect Register
sta , X ; Wite any data to address wi thin page

ANZ2183

MOTOROLA 23

Application Note

; Step 2:
; Wait for >10us, then set HVEN

| da #RamDel ay10 ;owai t
dbnza * ;. for 10us
| da #{ ERASE | HVEN} ; set HVEN control bit
sta flcr ; in Flash Control Register
; Step 3:
; VWait for >1ns, then cl ear ERASE.
| dx #20 ; outer |oop
Rantr aseEE1: ;. set for 20x
| da #RamDel ay50 ; i nner | oop
dbnza * ;. set for 50us
dbnzx RanEtr aseEE1 ; loop back until done
| da #{ HVEN} ; clear ERASE control bits
sta flcr ; in Flash Control Register
; Step 4:
; VWait for >5us, then clear HVEN, then wait >1lus and return.
| da #RamDel ay5 ;owai t
dbnza * ;. for 5us
clra : clear HVEN control bit
sta flcr ; in Flash Control Register
pul a ; retreive previous CCR
brn * ; wait for at |east 1lus before
rts ; r et ur ni ng
RanEr aseSi ze: equ {* - RanEr aseEE}
; * Fl ashEE Page Er ase Subrouti ne e e e e e e
- %
;* This subroutine will erase the Flash nenory page that is being pointed to by H X
;* 60 bytes of stack space is used, including this subroutine’s call return address.
. %
;* Calling convention:
. %
P * | dhx #EE St art Addr
P jsr EEEr ase
- %
:* Returns: H: X unchanged
- %
; * Changes: ACC
- %
EEEr ase:
pshx ; save pointer
pshh ;on stack

; Copy Fl ashEE page erase routine into RAM

| dhx #RanEr aseSi ze ; initialize pointer

AN2183

24 MOTOROLA

Application Note

flashee.asm

EEEr asel:

| da RanEr aseEE- 1, x ; get program from Fl ash

psha ; copy into Stack

dbnzx EEEr asel ; decrenent pointer and | oop back until done
; Execute programroutine in RAM

t sx ; use H: X to point to RAM executabl e routine

t pa ; get CCR

sei ; disable all interrupts

jsr , X ; erase Flash page

ais #RanEr aseSi ze ; deall ocate stack space used

pul h ;. restore

pul x ; address pointer

tap ; restore previous CCR

rts ; return

; * Find First Erased Fl ashEE Locati on Subrouti ne oo ———————————————=—===
. %
;* This subroutine is used to find the first erased Fl ashEE bl ock, starting at the
;* address being pointed to by H X The FlashEE data bl ock size is passed forward in ACC
- %
;* Calling convention:
- %
o | dhx #addr ess
o | da #EE Bl ockSi ze
o jsr EEFi ndFi r st
- %
:* Returns: H: X -> first erased Fl ashEE bl ock address
P ACC = nunber of erased Fl ashEE bytes |eft
¥ CCRZ = set if erased |ocation successfully found, otherw se clear
- %
;* Changes: everyt hing
. %
EEFi ndFi r st :
psha : save Fl ashEE data bl ock size
| da #EE_F| ashRow ; get Flash Program Row si ze
psha ; save on stack as a counter
EEFi ndFi rst 1:
| da #EE Fl ashEr ased ; get erased Flash data
cnp , X : check if Flash location is erased
beq EEFi ndFi rst2 oexit if so
pul a ; else, get counter
sub 1,sp ; adjust by subtracting bl ock size
bm EEFi ndFi rst3 ; exit if out of room
psha ;. else, save new count
t xa ; perform
add 2,sp : 16-bit addition
t ax ; in order
pshh ; to advance
pul a ; Fl ashEE poi nter
adc #0 ; f orwar ds
psha ; to the
pul h ; next bl ock
bra EEFi ndFirst1 ; 1 oop back
AN2183

MOTOROLA 25

Application Note

EEFi ndFi r st 2:

pul a ; retrieve remaining erased bytes count
EEFi ndFi r st 3:
ais #1 ; deall ocate stack usage

rts ; return

; * Fl ashEE Bl ock Pr ogram Subr outi ne oo - - - —————————————=—=—=—===
. %
;* This subroutine will wite the block of data being pointed to by H X into the FlashEE.
;* 80 bytes of stack space is used, including this subroutine call return address. The
;* FlashEE data bl ock size is passed forward in ACC.
- %
;* Calling convention:
- %
P | dhx #EE St art Addr
P pshx
P * pshh
P * | dhx #Bl ockSour ceAddr ess
P * | da #EE Bl ockSi ze
P jsr WiteEE
¥ ai s #2
- %
;* Returns: not hi ng
- %
;* Changes: everyt hing
. %
EEW it e:
psha : save Fl ashEE data bl ock size
pshx ; save bl ock
pshh ; source pointer
; Check for roomw thin first Fl ashEE row.
| dx 7,sp ; get first FlashEE row address |sb
| da 6,sp ; get first FlashEE
psha : row address
pul h ; nsb
| da 3,sp ; get FlashEE data bl ock size
bsr EEFi ndFi r st ; go find next free location
cnp 3,sp : check if there’'s room for another data bl ock
bpl EEWIitel ; continue if so
; Check for roomw thin second FlashEE row (which is within the sane erase page).
| dx 7,sp ; get first FlashEE row address |sb
| da 6,sp ; get first FlashEE
psha : row address
pul h ; nsb
ai x #EE_F| ashRow ; H: X now points to second program row
| da 3,sp ; get FlashEE data bl ock size
bsr EEFi ndFi r st ; go find next free location
cnp 3,sp : check if there’'s room for another data bl ock
bpl EEWitel ; continue if so
AN2183
26 MOTOROLA

Application Note
flashee.asm

If there’s no room then erase entire FlashEE page

| dx 7,sp

| da 6,sp
psha

pul h

bsr EEEr ase

EEWitel:

pshx
pshh

; get first FlashEE row address |sb
; get first FlashEE

: row address

; nsb

; erase entire FlashEE page

; save bl ock
; destination pointer

Copy Fl ashEE byte programroutine into RAM

| dhx #RanmWN i teSi ze

EEW it e2:
| da RamW it eEE-1, x
psha
dbnzx EEW it e2

; Prepare source and destination
t sx
| da {RamNfi teSize+2}, x
sta {RamNi t eSRC}, x
| da {RamNfiteSize+3}, x
sta {Ram\i t eSRC+1}, x
| da {RamWi teSize}, x
sta {Ram\iteDST1}, x
sta {RamW\ it eDST2}, x
| da {RamNfi t eSize+1}, x
sta {RamNfit eDST1+1}, x
sta {Ram\fi t eDST2+1}, x

Execute programroutine in RAM

t pa

sei

jsr , X

ais #{ RamW it eSi ze+5}
tap

rts

poi nters

; initialize program size counter

; get program from Fl ash
; copy onto stack
; decrenent pointer and | oop back until done

and Fl ashEE bl ock byte counter.

; use H:X to point to RAM executabl e routine
; get source address nsb

: save it in RAM executabl e routine
; get source address |sb

: save it in RAM executabl e routine
; get destination address nsb

; save it in

;. RAM execut abl e routine

; get destination address |sb

; save it in

;. RAM execut abl e routine

; get CCR for current |-bit status
; disable all interrupts
;. write data into Flash

; deall ocate stack space used
; restore previous CCR, specifically the I-bit
; return

RAM Execut abl e Fl ashEE Bl ock Pr ogram Subrouti he =================—=—==—=—=—=—=—=—=—=—=—==—=—===—======

This subroutine is copied into and executed fromRAM It is self-nodifying and expects

. %
. %

;* This subroutine controls the FlashEE bl ock programmi ng sequence
- %

;* to be called via "jsr ,x"

- %

AN2183

MOTOROLA

27

Application Note

RamiN i t eEE:
psha ; save previous CCR on stack
; Step 1:
; Set PGV read the Flash Block Protect Register and wite any data to first Flash address.
| da #{ PGV} ; set PGM control bit
sta flcr ; in Flash Control Register
| da flbpr ; read from Flash Bl ock Protect Register

; "RamWiteDST1" is | ocation offset relative to "RanWiteEE".
; This RAM location is used as a 16-bit destination address pointer.

Ram/\ i t eDST1: equ {*-Ram\W it eEE+1}
sta $FFFF ; Wwite any data to first Flash address
; Step 2:
; Wait for >10us, then set HVEN, then wait for >5us.
| da #RamDel ay10 ;owai t
dbnza * ;. for 10us
| da #{ PGM | HVEN} ; set HVEN control bit
sta flcr ; in Flash Control Register
| da #RamDel ay5 ;owai t
dbnza * ;. for 5us
; Step 3:

; Wite data to Flash and wait for 30 - 40us. Repeat until done.

RamAfi t eEEL:

; "RamWiteSRC' is |location offset relative to "RanWiteEE".
; This RAM location is used as a 16-bit source address pointer.

Rami i t eSRC: equ {*-Ranm\W it eEE+1}
| da $FFFF ; get data

; "RamWiteDST2" is | ocation offset relative to "RanWiteEE".
; This RAM location is used as a 16-bit destination address pointer.

Rama\ i t eDST2: equ {*-Ram\W it eEE+1}
sta $FFFF ; wite data to Fl ash

; Advance source and destination pointers.
; Thi s sequence requires between 14 to 22 cycles.

i nc {RamW\ it eDST2+1}, X ; advance the destination address |sb

bne Ram i t eEE2 ; skip if no overflow

i nc Ram\W it eDST2, x : else, advance the destination address nsb
RamiN i t eEE2:

i nc {Ram\i t eSRC+1}, x ; advance the source address |sb

bne Ram\ i t eEE3 ; skip if no overflow

i nc Ram\W i t eSRC, x : else, advance the source address nsb

AN2183

28 MOTOROLA

Rami i t eEE3:
| da
dbnza
dbnz

; Step 4

#{ RanDel ay30- 4}
*

{Ram\\i teSi ze+8}, sp, RanWiteEEl ; decrenent byte counter,

; C ear PGM and wait for >5us

| da
sta
| da
dbnza

; Step 5
; d ear HVEN

clra
sta
pul a
brn
rts

RamNiteSi ze:

ANZ2183

#{ HVEN}

flcr

#RamDel ay5

*

wai t

flcr

*

equ

>1lus and return

{*-RamW it eEE}

wai t
for a total of 30us

clear PGM control bit

in Flash Control Register
wai t

for 5us

clear HVEN control bit
in Flash Control Register
retreive previous CCR

wait for at |east 1lus before

r et ur ni ng

Application Note
flashee.asm

| oop back til done

MOTOROLA

29

Application Note

eetest.asm

. header ' MC68HC908GP32 Fl ash as EEPROM Test’
. base 10t

. pagewi dth 130

. pagel ength 90

EEE R R I S R R I R O

-k

;* Flash as EEPROM Test - MC68HC908GP32
* Copyright (c) Mdtorola, 2001

*

IR EEEE RS RS EREEEEEEREE SRR EREEREE R SRR EREEREERERREREEREREEREEEREEREEREREEREEEEEEESEESERESREERESERESESRERESESE]
*

;* Test program for Fl ashEE.

*

IR EEEE RS RS EREESEEEERE RS EEEREEREE R RS EREEREERERREREEREREERREEREEREEREREEREEEEREEEEESEREEERESRERESESRERESESE]

*

Fil e nane: eetest.asm Current Rel ease Level: 1.0
Last Edit Dat e: 15-Jun-01 Cl assi fication: ES

I ncl ude Files: gp32. equ : MCB68HCO908GP32 MCU definitions
fl ashee. equ : Fl ashEE paraneters
fl ashee. asm . FlashEE routines

Assenbl er: P&E' s CASMD8Z Ver si on: 3.16
Tar get : MC68HCI08GP32

Docunent ati on: MC68HC908GP32/H Rev 3
Motorola M crocontrol l er Techni cal Data

LR I O I S S R I S

Aut hor : DHJ Kl ot z
Fi rst Rel ease: 15-Jun-01

Rev Dat e Aut hor Description of Change

ES 1.0 15-Jun-01 DHIK Initial rel ease.

LR I O I S O

Not es:

LR I O I S I R I R S

Mot orol a reserves the right to make changes without further notice to any product
herein to inprove reliability, function, or design. Modtorola does not assunme any
liability arising out of the application or use of any product, circuit, or software
described herein; neither does it convey any license under its patent rights nor the
rights of others. Mdtorola products are not designed, intended, or authorized for
use as conponents in systens intended for surgical inplant into the body, or other
applications intended to support life, or for any other application in which the

; failure of the Mdtorol a product could create a situati on where personal injury or

L B S I I I N N I N S A I N N N N N N N R SR S N N SN N S N S S S N N N N N N N

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;* Update History:
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

AN2183

30 MOTOROLA

Application Note
eetest.asm

* death may occur. Should Buyer purchase or use Mdtorola products for any such
* i ntended or unaut horized application, Buyer shall indemify and hold Mtorola and
* its officers, enployees, subsidiaries, affiliates, and distributors harm ess agai nst
* all clainms, costs, damages, and expenses, and reasonable attorney fees arising out
* of, directly or indirectly, any claimof personal injury or death associated with
P * such uni ntended or unaut horized use, even if such claimalleges that Mdttorola was
* negli gent regardi ng the design or manufacture of the part.

*

*

*

*

Motorol a and the Mdtorola |ogo are regi stered tradenmarks of Mdtorola Ltd.

L S I R I I N

LR I O I S R I S R

. set simul at e ; enabl e sinulation situational assenbly
- % M CrOCOﬂtr0| | er Perl pheral Equat es IR R EEEEREEEEEEREEEEEEEEEEEEEEREEREEEEEEEEEEEEEEEEEEEE SRS
- %
nol i st
i ncl ude "gp32.equ" ; include mcrocontroller definitions file
l'ist
init_config2: equ 290000001 ; initial Configuration Register 2
init_configl: equ 290000001 ; initial Configuration Register 1
init_stack: equ ram | ast ; initialize stack pointer to |ast RAM | ocation

;¥**** Serial Communications Interface (SCl)
. %

init_sccl: equ 291000000 ; initial SCI Control Register 1
init_scc2: equ 290001100 ; initial SCI Control Register 2
init_scc3: equ 290000000 ; initial SCI Control Register 3
init_scbr: equ 290000000 ; initial SC Baud Rate Register

i ncl ude "fl ashee. equ" ; include FlashEE paranters file

-k H ER R R R R R R R R R R R R R R I I I T S T O I
; d obal Vari abl es

org ramstart
buffer: ds 64 ; generic input data buffer
;* Pov\er_on Reset IR R R EEEE R SRS EEEEREEE SRS EREEEREEREEREREEEEREREEEEEERESEESREEEESEEEREEEEEEEEEREEESEES]
. %
org $9000
Start:
sta copct | : clear the COP counter
nov #init_config2, config2 ; initialize Configuration Register 2
nov #init_configl, configl ; initialize Configuration Register 1
| dhx #init_stack+1l cinitialize
t xs ; the stack pointer
; Initialize the CGM for 7.3728 MHz bus speed from 32.768 kHz crystal.
I dhx #bus7372800 ; point to 7.372800 MHz paraneters
jsr PLLset ; change bus speed
AN2183

MOTOROLA 31

; d ear al

| dhx
Cl ear RAM

clr

ai x

cphx

bne

; Initialize Port

"W
'R
; "D
: B

*

*

*
-k
’

*
’

*
’

*

*

- %

cnd_read:
cnd_erase
cmd_wite:
cmd_dunp:
nmai n:
| dhx
jsr
jsr
cnp
beq
jsr
and

; Check for

theck_Read

cnp
bne

jsr
jsr
cnp
beq
cnp
beq
jmp

Main Contro

RAM

#ram start

, X
#1
#ram | ast +1
Cl ear RAM

#init_sccl, sccl
#init_scc2,scc2
#init_scc3,scc3
#init_scbr, scbr

Loop

I nterface commands:

I /O and Vari abl es

Application Note

point to start of RAM
cl ear RAM | ocati on
advance poi nter

done ?

| oop back if not

initialize SCI Control Register 1
initialize SCI Control Register 2
initialize SCI Control Register 3

initialize SCI Baud Rate Register

enable all interrupts

R I I S O

wite following sting into FlashEE

Fl ashEE bl ock data
dunp entire FlashEE
erase entire Fl ashEE

read back current

equ "R
equ "E
equ "W
equ "D

#nmsg_hel l o
PrintString
Get Char
#ascii _CR
mai n

Put Char
#$DF

Read command and execut e.

#cmd_read
Check_Erase

Get Char

Put Char

1

Check _Readl
#2
Check_Read2
Check What

Read comuand
Erase conmand
Wite command
Dunp command

point to hello nessage

out put it

get a character fromthe SC
check for ASCI| carriage return
just loop back if so

el se, echo character back

convert to uppercase

check for Read command
skip if not

fromthe SC
back
is 1st

get a character
echo char acter
check if target
continue if so
check if target
continue if so
el se, respond to unknown comand

Fl ashEE

is 2nd Fl ashEE

AN2183

32

MOTOROLA

Check _Readl
| dhx
| da
bra

Check _Read2:
| dhx
| da

Check _Read3:
psha
jsr
cnp
bne
pul a
| dhx
jsr
bra

Check_Read4:
| da
jsr
| da
jsr
ai x
dbnz
pul a
bra

; Check for

Check_Er ase:

cnp
bne

jsr
jsr
cnp
beq
cnp
beq
jmp
Check_Erasel
| dhx
bra
Check_Erase2
| dhx

Check_Erase3

#EE Start Addr1
#EE Bl ockSi zel
Check _Read3

#EE Start Addr 2
#EE Bl ockSi ze2

EERead
#EE Fl ashEr ased
Check _Read4

#msg_er ased
PrintString
mai n

#
Put Char

;X

Put HexByt e

#1

1, sp, Check_Read4

mai n

Erase conmand and execut e.

#cmd_er ase
Check Wite

Get Char

Put Char

1

Check _Erasel
2

Check _Erase2
Check What

#EE Start Addr1
Check _Erase3

#EE Start Addr 2

Application Note
eetest.asm

point to start of 1st FlashEE
get 1st Fl ashEE data bl ock size
conti nue

point to start of 2nd Fl ashEE
get 2nd Fl ashEE data bl ock size

save Fl ashEE data bl ock size on stack
nove pointer to Fl ashEE data

check if data is erased

skip if not

el se, deall ocate stack usage

poi nt to Fl ashEE erased nessage

out put it

| oop back to top

out put

a space

read Fl ashEE data
out put it
advance Fl ashEE poi nter
| oop back until done
deal | ocat e stack usage
| oop back to top

check for Erase conmmnd
skip if not

get a character fromthe SC
echo character back

check if target is 1st FlashEE
continue if so

check if target is 2nd Fl ashEE
continue if so

el se, respond to unknown comand

point to start of 1st FlashEE
conti nue

point to start of 2nd Fl ashEE

jsr EEEr ase Erase Fl ashEE

I dhx #msg_er ased poi nt to Fl ashEE erased nessage

jsr PrintString out put it

bra mai n | oop back to top
; Check for Wite command and execut e. S —-——————————-—— - - - ————————————=—===
AN2183
MOTOROLA 33

Application Note

Check Wite:
cnp #cmd_write check for Wite command
bne Check_Dunp skip if not
jsr Get Char get a character fromthe SC
jsr Put Char echo character back
cnp # 1 check if target is 1st FlashEE
beq Check_Witel continue if so
cnp # 2 check if target is 2nd Fl ashEE
beq Check_Wite2 continue if so
jmp Check_What el se, respond to unknown comand
Check Witel:
I dhx #EE_St art Addr 1 point to start of 1st FlashEE
| da #EE_BIl ockSi zel get 1st Fl ashEE data bl ock size
bra Check Wite3 conti nue
Check Wite2:
I dhx #EE_St art Addr 2 point to start of 2nd Fl ashEE
| da #EE_BIl ockSi ze2 get 2nd Fl ashEE data bl ock size
Check Wite3:
pshx save Fl ashEE address |sb tenporarily
pshh save Fl ashEE address nsb tenporarily
psha save Fl ashEE data bl ock size tenporarily
psha initialize a counter with value too
| da # = output '='" to indicate
jsr Put Char ready for data
I dhx #buf f er reset buffer pointer
Check Wite4:
jsr Get HexByt e go retrieve data byte
bne Check_What out put error if not hexadeci nal
sta , X save data in buffer
| da # out put
jsr Put Char a space
ai x #1 advance buffer pointer
dbnz 1, sp, Check_Wite4 | oop back until entire FlashEE bl ock received
pul a deal | ocat e stack usage
pul a retri eve Fl ashEE data bl ock size
I dhx #buf f er point to buffer (FlashEE address is on stack)
jsr EEW i te wite data into FlashEE
ais #2 deal | octe stack usage
jmp mai n | oop back to top
; Check for Dunp conmand and execute.
Check_Dunp:
cnp #cmd_dunmp check for Dunp conmand
bne Check_What skip if not
jsr Get Char get a character fromthe SC
jsr Put Char echo character back
cnp # 1 check if target is 1st FlashEE
beq Check_Dunpl continue if so
cnp # 2 check if target is 2nd Fl ashEE
beq Check_Dunp2 continue if so
jmp Check_What el se, respond to unknown comand
AN2183
34 MOTOROLA

Application Note

eetest.asm
Check_Dunpl:
| dhx #EE Start Addr1 ; point to start of 1st Fl ashEE
br a Check_Dunp3 ;. continue
Check_Dunp2:
| dhx #EE Start Addr 2 ; point to start of 2nd Fl ashEE
Check_Dunp3:
| da #8 cinitialize
psha ;. line counter
t xa ; perform
sub #16 ; 16-bit subtraction
psha ; in order to adjust
pshh ; Fl ashEE poi nt er
pul a ; backwar ds one dump
sbc #0 ; print row
psha ; and put pointer on the stack
Check_Dunp4:
I dhx #msg_CRLF ; point to <CR><LF> nessage
jsr PrintString ; output it
pul h ;. restore
pul x ; location pointer
ai x #16 ; add of f set
pshx ; save result
pshh ;. back on stack
| da #16 cinitialize
psha ; byte counter
Check_Dunp5:
| da # ; out put
jsr Put Char ; a space
| da , X : read Fl ashEE dat a
ai x #1 ; move location pointer
jsr Put HexByt e ; output it
dbnz 1, sp, Check_Dunp5 ; loop back until all bytes done
pul a ; deall ocate stack usage
dbnz 3, sp, Check_Dunp4 ; loop back until all Iines done
ais #3 ; deall ocate stack usage
jmp mai n ; loop back to top
; Handl e unknown conmands.
Check _What :
I dhx #msg_what ; point to unknown command nessage
jsr PrintString ; output it
jmp mai n ; loop back to top
;* Messages
; *
ascii _CR: equ $0D ; ASCI| carriage return
ascii_LF: equ $0A : ASCIIl line feed
nsg_hel | o: db ascii_CR,ascii_LF,'FlashEE>', 0
neg_erased: db " Fl ashEE erased’', 0
nsg_what : db "o
nsg_CRLF: db ascii_CRyascii_LF,0
AN2183
MOTOROLA 35

Application Note

;¥ PrintString Subroutine ==================
- %

;* This subroutine will output the null

- %

;* Calling convention:

- %

* | dhx #string :
v jsr PrintString :
A

* Returns: not hi ng

- %

o Changes: H: X

*

PrintStringl:

tem nated string pointed to by H- X to the SCI.

point to start
go output it

of string

brclr SCTE, scsl, PrintStringl ; wait until SC transmitter is enpty
nov X+, scdr ; output character to the SClI and advance pointer
PrintString:
t st , X ; test string character
bne PrintStringl ; loop back if not null
rts ;. else, return
- %
;* This subroutine will output the character passed in ACCto the SC .
. %
;* C function prototype:
. %
P * voi d Put Char (char data);
. %
;* Calling convention:
- %
P * | da dat a ; get character
p* jsr Put Char ; go output it
- %
;* Returns: not hi ng
. %
;* Changes: not hi ng
. %
Put Char :
brclr SCTE, scs1, Put Char ; wait until SC transmitter is enpty
sta scdr ; out put character to the SCl
rts ;return
- %
;* This subroutine will wait forever for a character to be received by the SCI and then
;* returns with that character in ACCC No error checking is performed. Note that this
;* is the primary | oop where the COP counter is cleared.
. %
;* C function prototype:
. %
P char Get Char (void);
- %
;* Calling convention:
- %
¥ jsr Get Char ; get a character fromthe SC
AN2183
36 MOTOROLA

- %

;* Returns:

¥ ACC= data

- %

Cet Char:
sta copct | ;
brclr SCRF, scs1, Get Char ;
| da scdr ;
rts ;

;¥ PutHexByte Subroutine ==================

- %

:* This subroutine converts the data in ACC

:* themvia the SCI.

- %

;* Calling convention:

. %

P * | da dat a

p* jsr Put HexByt e

- %

;* Returns: not hi ng

- %

;* Changes: ACC

- %

Put HexByt e:
psha ;
nsa ;
bsr Fr onHex ;
bsr Put Char ;
pul a ;
bsr Fr onHex ;
bsr Put Char ;

rts ;

;¥ GetHexByte Subroutine ==================

- %

;* This subroutine retrieves two ASCI| bytes

;* hex byte, which is returned in ACC.

. %

;* Calling convention:

. %

¥ jsr Get HexByt e

. %

:* Returns: CCRz= 1 if valid hex byte ret

P * ACC= data

- %

;* Changes: ACC

. %

Cet HexByt e:
bsr Get Char ;
bsr Put Char ;
bsr | sHex ;
bne Get HexByt e2 ;
bsr ToHex ;
nsa ;
psha ;

AN2183

Application Note
eetest.asm

clear the COP counter

wait forever until SC receiver is full
get data

return

toits two ASCII byte equival ent and out puts

save ACC tenporarily
nove upper nibbl e down

convert it to ASClI

out put it

retrieve data

convert | ower nibble to ASClI
out put it

return

via the SCl and converts (packs) theminto one

rieved. Otherw se, CCRZ= 0.

get nmsb character fromthe SC
echo it back

check if valid ASCII
exit if not

convert ASCI| hex character
swap | ower nibble up

save tenporarily

hex character

to hex val ue

MOTOROLA

37

jsr Get Char ;
bsr Put Char ;
bsr | sHex ;
bne Get HexByt el ;
bsr ToHex ;
add 1,sp ;
bi t #0 ;
Cet HexByt el:
ais #1 ;

Cet HexByt e2:
rts

Application Note

get |Isb character fromthe SC
echo it back

check if valid ASCI| hex character
exit if not

convert ASCI| hex character to hex val ue
combi ne nsb and | sb ni bbles
CCRz= 1

deal | ocate | ocal variable

return

*
;* This subroutine converts the val ue passed in the lower nibble of ACCto it’s ASC I
;¥ equival ent.
*
;* Calling convention:
- %
P jsr Fr onHex
*
:* Returns: ACC= dat a.
*
; * Changes: ACC
*
Fr omHex:
and #$0F ; mask of f upper nibble
add # 0 ; add ASCI| offset for 'O
cnp # 9 : check if result is between "0’ to '9’
bl s FronHex1 ; skipif so
add #7 ; else, adjust for value between 'A" to 'F
FromHex1:
rts ; return
- %
;* This subroutine converts the ASCII hex value passed in ACC to a binary hex val ue.
. %
;* Calling convention:
. %
P | da dat a
x jsr ToHex
. %
:* Returns: ACC= dat a.
. %
; * Changes: ACC
- %
ToHex:
sub # 0’ ; adjust first by subtracting '0’
cnp #9 : check if value was between 0" to '9’
bl s ToHex1 oexit if so
sub #7 ; else, adjust for value between 'A" to 'F
ToHex1:
rts ; return
AN2183
38 MOTOROLA

L I S S T S I . . N

| da
jsr

Ret ur ns:

Changes:

;

cnp
bl o
cnp
bl s
cnp
bl o
cnp
bl s
sub
cnp
bl o
cnp
bhi
| sHex1:
bi t
| snt Hex:
rts

* 0% X 3k X X X 3k X X X F F

| dhx
jsr

Ret ur ns:

Changes:
-k

PLLset:

becl r
bel r

ANZ2183

| sHex Subroutine

Calling convention:

dat a
| sHex

CCRZ= 1 if data is a valid hex character.

ACC (if |owercsae)

#' 0’ ;
| snt Hex :
#' 9 ;
| sHex1 ;
A ;
| snt Hex :
F ;
| sHex1 ;
#3$20 ;
#' A ;
| snt Hex :
F ;
| snt Hex :

#0 :

CGM PLL Bus Frequency Change Subroutine

This subroutine will programthe CGM PLL
the data being pointed to by H X

Calling convention:

#busfreq_tabl e
PLLset

no data

H: X

BCS, pct | ;
PLLON, pct | ;
X+, pct | ;
X+, pnrs ;
X+, pnsh ;
X+, pnsl ;
AUTO, pbwe ;
PLLON, pct | ;

"F or 'a

Application Note
eetest.asm

This subroutine checks if the value passed in ACCis a valid ASCI| hex character

within the ranges of "0 to '9" or "A to to 'f'. Adjusts ACC if |owercase.

Ot herwi se, CCRZ= 0.

check val ue agai nst '0’

not hex if | ower

check val ue agai nst '9’

is hex if |ower

check val ue agai nst 'A

not hex if | ower

check val ue agai nst 'F

is hex if |ower

adj ust to uppercase
check val ue agai nst 'A

not hex if | ower

check val ue agai nst 'F
i snt hex if higher

CCRzZ= 1

return

to change the bus frequency in accordance with

sel ect external
turn of f PLL
programP & E
program L
program N nsb
program N | sb

reference as base cl ock

enabl e automati c bandwi dth control

turn on PLL

MOTOROLA

39

Application Note

PLLwai t :
.ifnot sinulate

brclr LCCK, pbwe, PLLwai t
.endif

bset
rts

BCS, pct |

;* 8.003584 MHz bus frequency paraneters

-

bus8003584:

db $02
db $D0
db $03
db $D1
db $01
db $F4
db 990110000
db 200
;¥ 7.3728 MHz bus frequency paraneters
- %
bus7372800
db $02
db $C0
db $03
db $84
db $01
db $CC
db 990010010
db 184

i nclude "fl ashee. asni
;* Dummy | nterrupt Vector Handl er

Dunmy:

:* \Vectors

wait for PLL to |ock

sel ect VCO as base cl ock

return

P &E

L

N msb

N I sb

del ay_nsb
del ay_I sb

SCl Baud Rate Register = 9600
LCD 100us del ay paraneter

P &E

L

N msb

N I sb

del ay_nsb
delay_I sb

SCl Baud Rate Register = 9600
LCD 100us del ay paraneter

i ncl ude Fl ashEE routines

R S O I S

LR I I I R S I I

org vec_ti nebase : Ti nebase vector

dw Dunmy

org vec_adc ;. ADC vector

dw Dunmy

org vec_kbd ; Keyboard vector

dw Dunmy

org vec _scitx : SCl transmt vector

dw Dunmy

org vec _scirx : SCl receive vector

dw Dunmy

org vec_scierr ;. SCl error vector

dw Dunmy

org vec_spitx ; SPI transmt vector

dw Dunmy

org vec_spirx ; SPI receive vector

dw Dunmy

org vec_tin2ov ;. Timer 2 overfl ow vector

dw Dunmy

AN2183

40 MOTOROLA

Application Note
eetest.asm

org vec_timchl Timer 2 channel 1 vector
dw Dunmy
org vec_ti m2ch0 Ti mer 2 channel 0 vector
dw Dunmy
org vec_ti mlov Timer 1 oveflow vector
dw Dunmy
org vec_timlchl Timer 1 channel 1 vector
dw Dunmy
org vec_ti mlchO Timer 1 channel 0 vector
dw Dunmy
org vec_pl | PLL vector
dw Dunmy
org vec_irq I RQ vector
dw Dunmy
org vec_sw SW vector
dw Dunmy
org vec_reset Reset vector
dw Start
end
AN2183
MOTOROLA 41

Application Note

gp32.equ

EEE R R S R R I I

MC68HCI08GP32 Definitions

* Ok * F

Copyright (c) Derrick H} Klotz, 2001

L3RR I I S I I S

Fil e nane: gp32. equ Current Rel ease Level: 1.0
Last Edit Date: 22- Feb- 00 Cl assification: ES

I ncl ude Files: none
Assenbl er: P&E' s CASMD8 Ver si on: 3.06
Tar get Devi ce: MC68HC908GP32

Docunent at i on: MC68HC908GP32/ H Rev 3 M crocontrol |l er Technical Data

L DR S

E3E Rk I I S O I S S O

Aut hor : DHJ Kl ot z Locati on: TOR
Fi rst Rel ease: 22- Feb- 00

Updat e Hi story:

ES 1.0 22-Feb-00 DHIK Initial rel ease.

L A I

EE R I I S O R I I S I

Mot orol a reserves the right to make changes wi thout further notice to any product
herein to inprove reliability, function, or design. Mbdtorola does not assune any
liability arising out of the application or use of any product, circuit, or software
descri bed herein; neither does it convey any |license under its patent rights nor the
ri ghts of others. Modtorola products are not designed, intended, or authorized for
use as conponents in systens i ntended for surgical inplant into the body, or other
applications intended to support life, or for any other application in which the
failure of the Motorola product could create a situation where personal injury or
deat h may occur. Shoul d Buyer purchase or use Mdtorola products for any such

i ntended or unaut horized application, Buyer shall indemify and hol d Motorola and
its officers, enpl oyees, subsidiaries, affiliates, and distributors harm ess agai nst
all clainms, costs, danages, and expenses, and reasonable attorney fees arising out
of, directly or indirectly, any claimof personal injury or death associated with
such uni nt ended or unauthorized use, even i f such claimalleges that Mtorola was
negl i gent regardi ng the design or nanufacture of the part.

Mot orol a and the Motorol a | ogo are registered trademarks of Mtorol a Ltd.

L SR S I I I I R S A T I

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
p* Rev Dat e Aut hor Description of Change
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

EE Rk I I S O S I R I I R S

AN2183

42 MOTOROLA

;* Menory Map and Interrupt Vectors

Application Note
gp32.equ

R S O I

- %
)

ramstart:
ram| ast:
romstart:
roml ast:

vec_ti nebase:

vec_adc:
vec_kbd
vec_scitx:
vec_scirx
vec_scierr
vec_spitx
vec_spirx
vec_tinRov:

vec_tin2chl
vec_tin2chO

vec_timlov:

vec_timlchl
vec_timlchO

vec_pl |
vec_irgq
VeCc_SW:
vec_reset:

;* I nput/Qut put

equ $0040
equ $023F
equ $8000
equ $FDFF
equ $FFDC
equ $FFDE
equ $FFEO
equ $FFE2
equ $FFE4
equ $FFE6
equ $FFE8
equ $FFEA
equ $FFEC
equ $FFEE
equ $FFFO
equ $FFF2
equ $FFF4
equ $FFF6
equ $FFF8
equ $FFFA
equ $FFFC
equ $FFFE
(1/0) Ports

start of RAM

| ast

RAM | ocat i on

start of ROM

| ast

ROM | ocat i on

Ti nebase vector

ADC

vect or

Keyboard vect or

Scl
Scl
Scl
SPI

transmt vector
recei ve vector
error vector
transmt vector

SPlI receive vector

Timer 2 overfl ow vector
Timer 2 channel 1 vector
Timer 2 channel 0 vector
Timer 1 ovefl ow vector
Timer 1 channel 1 vector
Timer 1 channel 0 vector
PLL vector

I RQ vect or

SW vector

Reset vector

EE R I R O I R I R O

-k
’

port a:
port b:
portc:
portd:
ddr a:
ddrb:
ddrc:
ddrd:
port e:
ddre:
pt apue:
pt cpue:
pt dpue:

;% Seri al

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

Peri phera

$00
$01
$02
$03
$04
$05
$06
$07
$08
$0C
$0D
$0E
$0F

Interface Mdule (SPI)

Port
Port
Port
Port
Port
Port
Port
Port
Port
Port
Port
Port
Port

A Data Regi ster

B Data Regi ster

C Data Regi ster

D Data Regi ster

A Data Direction Register

B Data Direction Register

C Data Direction Register

D Data Direction Register

E Data Regi ster

E Data Direction Register

A Input Pullup Enabl e Register
C I nput Pul lup Enabl e Register
D I nput Pul lup Enabl e Register

LR I S I S

- %
)

spcr: equ $10 ; SPI Control Register

SPRI E: equ 7 ; SPI receiver interrupt enable bit

SPMSTR: equ 5 : SPI master bit

CPQOL: equ 4 ; clock polarity bit

CPHA: equ 3 ; clock phase bit

SPWOM equ 2 : SPI wired-or npde bit

SPE: equ 1 ;. SPI enable

SPTI E: equ 0 ; SPI transmit interrupt enable

AN2183

MOTOROLA 43

Application Note

spscr:
SPRF:
ERRI E:
OVRF:
MODF:
SPTE:
MODFEN:
SPR1:
SPRO:

,spdr:

;% Seri al

- %
)

sccl:
LOOPS:
ENSCI :
TXI NV:
M
WAKE:
ILTY:
PEN:
PTY:
scc2:
SCTI E:
TCl E:
SCRI E:
I LIE:
TE:
RE:
RWU
SBK:

scc3:
R8:
T8:
DVARE:
DVATE:
CRI E:
NEI E:
FEI E:
PEI E:

scsl:
SCTE:
TC.
SCRF:
| DLE:
OR:
NF:
FE:
PE:

equ
equ
equ
equ
equ
equ
equ
equ
equ

equ

equ
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ
equ
equ

$11 ; SPI
7 ;
6 ;
5 ;
4 ;
3 ;
2 ;
1 ;
0 ;
$12 ; SPI

Communi cations Interface (SC)

LR I S O R I

$13 ; SA
7 ;
6 ;
5 ;
4 ;
3 ;
2 ;
1 ;
0 ;
$14 ; Sa
7 ;
6 ;
5 ;
4 ;
3 ;
2 ;
1 ;
0 ;
$15 ; SA
7 ;
6 ;
5 ;
4 ;
3 ;
2 ;
1 ;
0 ;
$16 ; SA
7 ;
6 ;
5 ;
4 ;
3 ;
2 ;
1 ;
0 ;

Status and Control Register
SPI receiver full bit

error interrupt enable bit
overflow bit

node fault bit

SPI transmitter enpty bit
node fault enable bit

SPI baud rate

select bits

Dat a Regi ster

* k k%

Control Register 1

| oop node select bit
enable SCI bit
transmt inversion bit
node bit

wakeup condition bit
idle line type bit
parity enable bit
parity bit

Control Register 2

SCl transmit interrupt enable bit

transm ssion conplete interrupt enable bit
SCl receive interrupt enable bit

idle line interrupt enable bit

transmtter enable bit

recei ver enable bit

recei ver wakeup bit

send break bit

Control Register 3

received bit 8

transmtted bit 8

DMA receive enable bit

DMA transfer enable bit

recei ver overrun interrupt enable bit

recei ver noise error interrupt enable bit
recei ver framng error interrupt enable bit
recei ver parity error interrupt enable bit

Status Register 1

SCl transmitter enpty bit
transm ssion conplete bit
SCl receiver full bit
receiver idle bit

recei ver overrun bit

recei ver noise flag bit
recei ver framng error bit
recei ver parity error bit

AN2183

44

MOTOROLA

Scs2:
BKF:
RPF:

scdr:
schbr:

;* Keyboard | nterrupt

equ
equ
equ

equ
equ

$17
1
0

$18
$19

Modul e (KBI)

Status Register 2

break flag bit

Application Note
gp32.equ

reception in progress flag bit

Dat a Regi ster
Baud Rate Regi

LR I O O

-

i nt kbscr:
KEYF:
ACKK:

| MASKK:
MODEK:

i ntkbi er:
KBI E7:
KBI E6:
KBI E5:
KBI E4:
KBI E3:
KBI E2:
KBI E1:
KBI EO:

equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ
equ
equ

$1A

OoOr N
=
[o9]

OFRLNWkAMUOON®H

;* Timebase Modul e (TBM

IRk I S I S R I R O

: *
tber:
TBI F:
TBR2:
TBR1:
TBRO:
TACK:
TBI E:
TBON:

:* External

equ
equ
equ
equ
equ
equ
equ
equ

I nterrupt

[
@]

P NWSAOOO NS

(IRQ

; Keyb

; Keyb

o Tinme

ster

oard Status and Control Register

keyboard fl ag

bi t

keyboard acknow edge bit
rupt mask bit
keyboard triggering sensitivity bit

keyboard inter

oard Interrupt

Enabl e

base Control Register
ti mebase interrupt flag

\

Regi st er

ti nebase rate sel ection

/

ti mebase acknow edge
rupt enable

ti nebase inter
ti nebase enabl

ed

R S S I O R O

-k
’

intscr:
| RQF:
ACK:

| MASK:
MODE:

;* Configuration Registers (CONFI G

equ
equ
equ
equ
equ

$1D
3

2
1
0

; ITRQ

Status and Contr ol

IRQ flag bit

| RQ i nterrupt
| RQ i nterrupt
| RQ edge/ | evel

IRk S O I O R

- %

request
mask bit
sel ect

Regi st er

acknow edge bit

bi t

,conf ig2: equ $1E ; Configuration Register 2

configl: equ $1F ; Configuration Register 1

AN2183

MOTOROLA 45

Application Note

% Ti mer

Interface module (TIM

LR S R O S O S

- %
)

tlsc:
t 2sc:
TOF:
TA E:
TSTOP:
TRST:
PS2:
PS1:
PSO0:

t 1scO:
t1scl:
t 2scO:
t2scl:
CHxF:
CHxI E:
MBX B:
MBXA:
ELSxB:
ELSxA:
TOVX:

CHx MAX:

tlcnt:
t 1nod:
t 1chO:
t1lchil:

t2cnt:
t 2nod:
t 2chO:
t2chl:

equ
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ

equ
equ
equ
equ

:* O ock Generator
R EEEREEREEEREEEEREEEEREEEEREEREEEE

: *
pctl :
PLLI E:
PLLF:
PLLON:
BCS:
PREL:
PREO:
VPR1:
VPRO:

pbwc:
AUTC
LOCK:
ACQ

pnsh:
pmsl :
pnrs:
pnds:

equ
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ

equ
equ
equ
equ

$20
$2B

OFRLNAMUOION

$25
$28
$30
$33

OFRLNWhMUUIO N

$21
$23
$26
$29

$2C
$2E
$31
$34

Modul e (CGWVO)

©+ OFRLrNWkAMUTO NS
w w
~ (2}

g o~

$38
$39
$3A
$3B

Ti
Ti

Ti
Ti
Ti
Ti

Ti
Ti
Ti
Ti

Ti
Ti
Ti
Ti

PLL

PLL
PLL
PLL
PLL

mer 1 Status and Control Register
mer 2 Status and Control Register

TIMoverflow flag bit

TIM overflow i nterrupt enable bit
TIM stop bit

TIMreset bit

\

prescal er select bits

/

mer 1 Channel 0 Status and Control Register
mer 1 Channel 1 Status and Control Register
mer 2 Channel 0 Status and Control Register
mer 2 Channel 1 Status and Control Register

channel x flag bit

; channel x interrupt enable

: channel x npde select bit B

: channel x npde select bit A

; channel x edge/level select bit B
; channel x edge/level select bit A
; channel x toggle on overflow bit

; channel x maxi mum duty cycle bit
mer 1 Counter Register

mer 1 Counter Mdul o Register

mer 1 Channel 0 Regi ster

mer 1 Channel 1 Register

mer 2 Counter Register

mer 2 Counter Mdul e Register

mer 2 Channel 0 Register

mer 2 Channel 1 Register

Control Register
PLL i nterrupt enable bit
PLL interrupt flag bit
PLL on bit
base cl ock select bit
prescal er

programbits
VCO power - of -t wo

range select bits

Bandwi dt h Control Register
automati ¢ bandwi dth control bit
| ock indicator bit

acqui sition node bit

Mul tiplier Select H gh Register
Mul tiplier Select Low Register
VCO Sel ect Range Regi ster

Ref erence Divi der Sel ect Register

AN2183

46

MOTOROLA

;* Anal og-to-Digital

Converter (ADC)

Application Note
gp32.equ

LR I S O

- %

adscr:
COCO
Al EN:
ADCO;
ADCH4:
ADCH3:
ADCH2:
ADCH1:
ADCHO:

adr :

adcl k:
ADI V2:
ADI V1:
ADI VO:
ADI CLK:

;* SystemIntegration Mdule (SIM

equ
equ
equ
equ
equ
equ
equ
equ
equ

equ

equ
equ
equ
equ
equ

w
@]

ORLNWkAMOO NS

$3D

$3E
7

6
5
4

ADC Status and Control Register
; conversions conmplete flag
; ADC interrupt enable bit
: ADC conti nuous conversion bit

o\
oo\

; ADC channel select bits

o
i

ADC Dat a Regi ster

ADC Cl ock Regi ster

;o\

; ADC cl ock prescaler bits

i

; ADC i nput clock select bit

LR I O R I S S O

; *
sbsr:
SBSW
Srsr:
POR:
Pl N:
COP:

| LOP:

| LAD:
MODRST:
LVI:

subar:
sbfcr:
BCFE:
intl:
int2:
i nt3:

;* Flash Menory

equ
equ

equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ

$FEOO
1

$FEO1

PNWPMAMOOIO N

$FEO2
$FEO3
7

$FEO4
$FEO5
$FEO6

SI M Break Status Register
; SIM break stop/wait

SI M Reset

St at us Regi ster

; power-on reset bit

; external reset bit

; COP reset bit

; illegal opcode reset bit

; illegal opcode address reset bit

; monitor nmode entry nodul e reset bit
: LVI reset bit

SI M Upper

Byt e Address Register

SIM Break Flag Control Register
; break clear flag enable bit

I nterrupt
I nterrupt
I nterrupt

Stat us Register 1
Stat us Regi ster 2
Stat us Register 3

R I S I I S

- %

flcr:

equ $FEO8 ; Flash Control Register
HVEN: equ 290001000 ; high-voltage enabl e bit nask
MASS: equ 290000100 ;. mass erase control bit mask
ERASE: equ 290000010 : erase control bit nmask
PGM equ 290000001 ; program control bit nmask
flbpr: equ $FF7E ; Flash Block Protect Register
AN2183
MOTOROLA 47

Application Note

;* Breakpoint Mdul e (BRK)

R S S O S S

- %
br kh: equ $FEO9 ; Break Address Register High

brkl : equ $FEOA ; Break Address Register Low
brkscr: equ $FEOB ; Break Status and Control Register
BRKE: equ 7 : break enable bit

BRKA: equ 6 : break active bit

;* Low Vol tage I nhibit (LVI)

R I O I O

- %
| visr: equ $FEOC ; LVl Status Register
LVI OUT: equ 7 ; LVl output bit

;* Conputer Operating Properly (COP)

LR I O O R S O

-

copctl : equ $FFFF ; COP Control Register

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer’s technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the

i

design or manufacture of the part. Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

@ MOTOROLA

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334
Technical Information Center: 1-800-521-6274

HOME PAGE: http://www.motorola.com/semiconductors/

© Motorola, Inc., 2001

AN2183/D

	Introduction
	FlashEE Implementation
	flashee.equ Subroutines
	Microcontroller FLASH Memory Parameters
	FlashEE Data Parameters
	Microcontroller Bus Frequency Parameters

	flashee.asm Subroutines
	EERead
	EEErase
	EEWrite

	eetest.asm Subroutines
	Read FlashEE (R)
	Erase FlashEE (E)
	Write FlashEE (W)
	Dump FlashEE (D)

	Summary
	flashee.equ
	flashee.asm
	eetest.asm
	gp32.equ

