
Order this document
by AN1831/D
Rev. 2
Semiconductor Products Sector
Application Note

AN1831

Using MC68HC908 On-Chip FLASH Programming Routines

ROM-Resident Routines in the MC68HC908GR8, MC68HC908KX8,
MC68HC908JL3, MC68HC908JK3, and the MC68HC908JB8

By Grant Whitacre
MMD Applications Engineering
Austin, Texas

Introduction

This application note describes how to use the routines that are stored
in ROM (read-only memory) in the MC68HC908GR8, MC68HC908KX8,
MC68HC908JL3/JK3, and the MC68HC908JB8 microcontrollers
(MCU).

These routines are used to program, erase, and verify FLASH memory
and may be accessed in either user mode or monitor mode(1). There are
additional routines in the MC68HC908KX8 to trim the internal clock
generator, which are also described herein. This document describes
the method of calling each of the routines in the collection and specifies
what is performed and returned as confirmation of routine execution.

To illustrate how these routines are used in practice, a program is
included, which can be configured for use in any of these devices to
program FLASH in either user mode or monitor mode.

1. These routines are accessible in both user mode and monitor mode in all listed devices except
the MC68HC908GR8. This device allows access to these routines in monitor mode only.
© Motorola, Inc., 2001

TM

Application Note
In addition, a host program, downloadable from the Motorola Web site,
has been developed to provide a PC interface to download this program
to a device to program FLASH.

FLASH Overview

The routines described here have been incorporated into ROM on these
particular devices, which do not have enough RAM to allow for this
functionality in a RAM routine. The type of FLASH for which these
routines are applicable is called "split gate" FLASH because of the type
of technology used, TSMC FLASH after the fabrication plant, or SST
FLASH after the company who originally designed it.

Split gate FLASH has significant advantages. Some of these
advantages are:

• Faster programming time. It takes 30 to 40 µs to program each
byte, which translates to a little more than a quarter second of
programming time to program an entire 8-Kbyte array.

• Better endurance. This type of FLASH is specified to withstand at
least 10,000 program/erase cycles. Older technologies provided
only about 100 program/erase cycles.

• Simpler programming algorithm. The programming algorithm for
split gate FLASH is a simple process of turning on high voltage,
applying it to the row to be programmed, and writing values to
each byte to be programmed in turn. This differs from past
technology which required an iterative process of turning on high
voltage and applying it to a page, writing values to each byte in the
page, checking all bytes for valid values in a "margin" read
condition, and then repeating the program/verify process until all
bytes are verified correctly.

Split gate FLASH is programmed generally on a row basis and erased
on a page basis. Also, the entire array can be mass erased. A page
always contains two rows, but the size of the page can vary from one
device to another. A typical page size is 64 or 128 bytes. Before
reprogramming a byte in one row that is currently programmed with a
AN1831 — Rev. 2

2 MOTOROLA

Application Note
The Routines
different value, the entire page must be erased and reprogrammed.
Refer to the applicable data manual for the proper program and erase
procedure for this FLASH.

The Routines

The collection consists of five callable(2) routines and each is described
in Table 1. These routines are explained briefly here, but the parameters
and the passing method are addressed in later sections.

GETBYTE GETBYTE is a routine that receives a byte on the monitor mode
communication port defined for that particular device, and this received
value is passed back to the calling routine in the accumulator. For these
devices, the communication port is either port A0 or port B0. Check
Table 3 for the constant definition for COMMPORT for the port used for
each device. This routine expects the same non-return-to-zero (NRZ)
communication protocol and baud rate that is used in monitor mode(3).
The difference between this routine’s method of receiving a byte and
when the monitor receives a byte is that the monitor echoes back
whatever is received. It may be more efficient for a RAM program to use
this routine when receiving data from a host, to eliminate the time
overhead in sending out every byte that is received. This is especially
true if the host program and RAM routine already have a built-in error
detection scheme, such as a message checksum, and there might not
be a need to do an echo check for each byte sent.

2. These routines are accessible in both user mode and monitor mode in all listed devices except
the MC68HC908GR8. This device allows access to these routines in monitor mode only.

3. The baud rate will be fOP/256 for all but the MC68HC908JB8. In this device, the bit rate for this
routine as well as for the monitor mode send/receive routines have been changed to accom-
modate a "standard" fOP for this device considering it is a USB part. The bit rate for the
MC68HC908JB8 is fOP/208.
AN1831 — Rev. 2

MOTOROLA 3

Application Note
RDVRRNG RDVRRNG routine serves two purposes:

• It can be used to read a range of FLASH locations.

• It can be used to verify a range of FLASH locations with data
contained in the data array in RAM.

Actually, both functions are performed each time the routine is called,
and the data in the specified FLASH range is returned. A degree of
flexibility with this routine is that one can specify where the data is to be
returned. If the accumulator is 0 when entering RDVRRNG, then the
data read will be sent to the monitor mode communication port. If the
accumulator is non-zero, then the data is placed in RAM in the data
array, replacing the existing contents. The beginning and end of the
range to be read and/or verified are specified as parameters to this
routine. The carry bit of the condition code register is set if the data in the
specified range is verified successfully against the data in the data array.
One more added function of this routine is that it does a checksum on
the data returned. This checksum, which is the LSB of the sum of all
bytes in the entire data collection, is stored in the accumulator upon
return from the function.

PRGRNGE PRGRNGE is used to program a range of FLASH locations with data
loaded into the data array. As with RDVRRNG, the start and end location
of the range of addresses to be programmed is passed by parameter. A
check to see that all bytes in the specified range are erased is not
performed by this routine prior to programming. Nor does this routine do
a verification after programming, so there is no return confirmation that
programming was successful. It should be noted that PRGRNGE returns
with the first-address variable, FADDR, set to the address of the next
byte after the range just programmed. The last-address variable LADDR
is not changed. Also, since this routine calls the delay routine DELNUS,
parameter passing requirements for that routine must be met when
calling PRGRNGE.

Another point worth noting is that this routine allows any range to be
passed to it. That is, the range does not have to be coincident with row
boundaries. The range specified can be at the beginning of a row, the
middle of a row, the end of a row, or it can be a range overlapping row
AN1831 — Rev. 2

4 MOTOROLA

Application Note
The Routines
boundaries. The only two things that the user must assure is that the
range specified is first erased and that whatever is specified as the
range, the data for the range must be in the data array in RAM.

NOTE: This routine can be used in conjunction with RDVRRNG to perform a
complete program and verification cycle of the specified range.

ERARNGE ERARNGE can be called to erase a range of locations in FLASH. This
routine does not use the last address (LADDR) variable. The first
address (FADDR) placed in H:X in the two previous routines actually can
be any address in the range to be erased. There are only two sizes of
erase ranges: a page or the entire array. Therefore, this routine needs to
be told what type of erase is desired. This is done by setting a bit called
the mass bit in a control variable in RAM called CTRLBYT. This is
explained in more detail later in Variables.

CAUTION: Using ERARNGE to erase a page on the MC68HC908GR8,
MC68HC908KX8, or MC68HC908KX2 causes the erase of the vector
page when called to erase another page of FLASH. This behavior is a
side effect of servicing the computer operating properly (COP) during
this routine’s necessary delay of 1 millisecond. The workarounds for this
behavior are:

1. Set block protection so that at least the vector page is protected
from erase and inadvertent reprogramming. Then any page
erases, other than an attempt to erase the vector page, will result
in the intended page being erased, but the vector page will remain
intact.

2. Accept the erase of the vector page by first buffering the data of
this page in RAM and then, after the intended page is erased
along with the vector page, reprogram the vector page with the
buffered data.

3. Do not use this erase routine in ROM. Write your erase routine and
keep it in FLASH. Whenever a page erase is desired, copy the
routine to RAM and execute the erase from there. Be sure to omit
instructions that service the COP.
AN1831 — Rev. 2

MOTOROLA 5

Application Note
DELNUS The last routine is a delay routine used in support of the PRGRNGE and
ERARNGE routines. It can, however, be called independently. DELNUS
takes two parameters — one signifying the operating frequency passed
via the accumulator and the other, a single byte value passed in the X
register, specifying the length of the delay. Neither of these parameters
is passed as an absolute value. The operating frequency variable is a
value four times that of fOP actually used, and this value has an allowable
lower limit of four representing 1-MHz operation. The delay value passed
represents the number of 12 microsecond increments for the delay.
Therefore, the resolution of the delay is 12 microseconds. The minimum
delay is, of course, 12 microseconds and the maximum delay for this
routine is a little more than 3 milliseconds (255 * 12 µs). The precision of
the delay is very high considering that it is normalized to the frequency
of operation which can be specified to within 0.25 MHz. The worst
precision occurs for short delays at relatively slow operating frequencies,
where both values passed are midway between possible values(4).

When the delay routine is called by PRGRNGE or ERARNGE (the only
routines in this collection which call the delay routine), the calling routine
loads the X register with the value of the delay needed. The frequency
parameter is loaded into the accumulator by reading the RAM variable
CPUSPD. This variable, therefore, must be pre-loaded by the RAM
routine calling PRGRNGE or ERARNGE.

4. An example of this worst-case error would be an fOP of 1.125 MHz and a desired delay of
18 µs. For these conditions, a value for the frequency parameter could be either 4 or 5, signi-
fying an fOP of 1.00 or 1.25 MHz, respectively. The delay value passed could be either 1 or 2,
signifying 12 or 24 µs delay, respectively. In a case like this, choose the lower value for one
parameter and the upper value for the other parameter to minimize the error of the delay.
AN1831 — Rev. 2

6 MOTOROLA

Application Note
The Routines
Table 1. FLASH Routines

Routine
Name

GETBYTE RDVRRNG PRGRNGE ERARNGE DELNUS

Routine
Description

Gets a byte
of data from
comm port

Reads and/or
verifies a range
of locations

Programs a
range* of
locations

Erases** a page
or the entire
range

Delays for
n x 12 µs

Entry
Conditions

Comm port
configured
as an input

H:X contains first
address of
range; LADDR
contains last
address read;
Acc is tested to
see if read data
goes to comm
port
(Acc = $00) or
to DATA;DATA
contains data
against which
to compare
read data

H-X contains first
address of
range; LADDR
contains last
address to be
programmed;
DATA contains
data used
during
programming;
 CPUSPD
contains 4 * fOP

H:X contains any
address in
range to be
erased; range
size specified
by control byte;
CPUSPD
contains 4 * fOP

X contains
 time ÷ 12 of
 delay (in µs);
 Acc contains
 4 times fOP

Exit
Conditions

Acc is loaded
 with byte
received

C bit is set if good
compare; Acc
contains
checksum;
DATA may
contain read
FLASH data

H:X contains next
address after
range just
programmed

Preserves
contents of H:X
(address
passed)

Subroutines
Called

Get_Bit DELNUS DELNUS

Variables
Read

LADDR, DATA
ARRAY

CONTROL
BYTE, LADDR,
DATA ARRAY,
CPUSPD

Control Byte,
CPUSPD

Variables
Modified

DATA ARRAY

Stack Used 4 bytes 6 bytes 7 bytes 5 bytes 3 bytes

*Allows programming of a range of addresses, which does not have to be on a row boundary, either beginning or end. For
example, programming $F001 to $F008 is valid.

** Does not check for a blank range before (to see if erase is necessary) or after (to see if successful erase)
AN1831 — Rev. 2

MOTOROLA 7

Application Note
Defined Constants

Table 2 lists the various constants defined for these routines. All but the
FLCR address relate to delays used during programming and erasing.
The constants ending in a Q are values passed to the delay routine. As
mentioned previously, the delay routine takes a parameter which
represents the number of 12 microsecond increments of delay time.
Therefore, program time, TPROG, which is specified as a time between
30 and 40 microseconds, has a duration here of 12 times TPROGQ, or
36 microseconds.

Page erase and mass erase delays are done the same way, except that
the routines are called ECALLS and MECALLS times, respectively.
Therefore, a mass erase delay, which is specified to be 4000
microseconds, is actually 20 delays each with a duration of
17 * 12 microseconds, which results in a total mass erase delay of 4080
microseconds (MECALLS * TMERASEQ * 12 microseconds).

Table 2. Constants Used in Routines

Constant
Name

Description Value

FLCR FLASH control register address $FE08

TPROGQ Program time 3

TERASEQ Erase time 17

TMERASEQ Mass erase time 17

TNVSQ HVEN setup time 1

TPGSQ Program hold time 1

TNVHQ HV hold time 1

TNVHLQ HV hold time (mass erase) 8

TRCVQ Return to read time 1

ECALLS Calls to delay for page erase 5

MECALLS Calls to delay for mass erase 20
AN1831 — Rev. 2

8 MOTOROLA

Application Note
Variables
Because of the differences in some of the constants used for each
device, the following constants need to be specific to the particular
device. Table 3 shows the constant values for each device. Since these
values are device-specific, they have not been included in the source
code in ROM Routines Source Code.

Variables

Table 4 shows the variables used in the routines. These variables are
either passed in a register or as static variables in a predefined location
in RAM. FADDR is a 2-byte value that represents the first address in the
range on which to be operated. It is passed in the H:X registers when a
call is made to one of the routines. The first address of a range can be

Table 3. Device-Specific Values for Constants

Constant
Name

Description
MC68HC
908GR8

MC68HC
908KX8

MC68HC
908JL3/JK3

MC68HC
908JB8

RAM Start address of RAM $40 $40 $80 $40

ROWSIZ
Size of row for

programming
32 32 32 64

COMMPORT
Communication port for

monitor mode
PTA0 PTA0 PTB0 PTA0

FLBPR
FLASH block protect

register address
$FF7E $FF7E $FE09 $FE09

Get_Put

Address of routine to
get and then output a
byte on the comm
port (monitor code)

$FE99 $FE97 $FEBD $FEC0

Put_Byte

Address of routine to
output a byte on
communication port
(monitor code)

$FEAE $FEAA $FED0 $FED5

Get_Bit

Address of routine to
get a bit on
communication port
(monitor code)

$FED2 $FECE $FF00 $FF00
AN1831 — Rev. 2

MOTOROLA 9

Application Note
any valid FLASH address and does not have to be on a row or page
boundary.

LADDR is the last address in the range and is passed in the first byte of
the data structure in RAM. This data structure is very simple, consisting
of the last address, the CPU speed variable, a control byte, and the data
array. It is discussed in detail in The Data Structure. The last address,
like the first address, can be any valid FLASH address and is not
restricted to being the last byte of a page or row.

The internal operating frequency of the device on which the FLASH
operation is to be performed is passed in a variable called CPUSPD. It
is a 1-byte value which is passed in the data structure and should be
given as the rounded product of four times the actual internal operating
frequency, such that if fOP is 2.4576 MHz, then the value passed should
be decimal 10, or $0A. This variable is used to normalize the length of
delays with respect to the operating frequency, and passing a value four
times the actual frequency provides better resolution.

The remaining operating parameter used in these routines is a single bit
value in the control byte. This bit is called the mass bit and is set when
calling ERARNGE to perform a mass erase. If ERARNGE is called with
the intention of performing a page erase, then the mass bit must be
cleared. The other bits in CTRLBYT are not used and can be set at the
user’s discretion for other flags.

Table 4. Variables Used in Routines

Variable Name Description Size
Location/Passing

 Method

FADDR
First address of range

of locations
2 bytes H:X

LADDR
Last address of range

of locations
2 bytes Data structure

CPUSPD 4 x fOP 1 byte Data structure

CTRLBYT Mass bit (bit 6) 1 byte Data structure

DATA Data array Variable Data structure
AN1831 — Rev. 2

10 MOTOROLA

Application Note
The Data Structure
The Data Structure

The data structure is a collection of static variables in RAM used in the
execution of the three main routines – PRGRNGE, ERARNGE, and
RDVRRNGE. The data structure is in the same relative location in RAM
and the content is the same data and order for all of the devices
containing these ROM routines. The structure always starts in the ninth
byte of RAM and the order of the variables is as shown in Table 5.

Note that the data array DATA is variable in length. This is done to
support a variable number of locations on which to perform any of the
programming, reading, or verifying actions. Most of the time, these
actions will be performed on a row of data at one time, although that
need not be the case. Some of these devices have a rather small RAM
array, and the size of the data array must be limited to the size of RAM
minus the stack needed and the size of any RAM routine being
executed. If the RAM routine is kept to a reasonable size, then there
should not be a problem defining the data array to be the size of a row
for any of the devices in this collection.

Table 5. Data Structure Location and Content

Location
Variable

Name
 Size

(Bytes)
Description

RAM + $08 CTRLBYT 1 Includes mass flag as bit 6

RAM + $09 CPUSPD 1 CPU speed passed as 4 x fOP

RAM + $0A
RAM + $0B

LADDR 2
Last address for read a range

and program a range

RAM + $0C DATA Variable
Variable number of bytes of passed

data for programming or verifying
a block
AN1831 — Rev. 2

MOTOROLA 11

Application Note
Addresses of Routines

The address to call each of the five routines varies among the devices.
Table 6 gives the absolute address that should be used when calling the
routines.

MC68HC908KX8 Trim Routine

The MC68HC908KX8 contains two additional routines in ROM, which
have been included to support the trimming of the internal clock
generator (ICG) module. ICGTRIM is located at $1330 in the
MC68HC908KX8 and can be called to trim the ICG by measuring the
pulse width of a break signal received on port A0 or port B4. The baud
rate used for the break signal must be equal to the internal frequency of
the device divided by 256. Communication must be in conformance with
normal monitor mode communication, that is, non-return-to-zero (NRZ)
format. A break signal is defined as 10 consecutive low bits, so the pulse
width of this signal is nominally 1.04 milliseconds at 9600 baud. This
signal must be within 25 percent of the nominal value or the routine will
not attempt to trim the ICG.

Table 7 specifies the relationship between the internal frequency, the
baud rate, and the pulse width of the break signal.

Table 6. Addresses of Routines

Routine
MC6868HC

908GR8
MC68HC
908KX8

MC68HC
908JL3/JK3

MC68HC
908JB8

GETBYTE $1C99 $1000 $FC00 $FC00

RDVRRNG $1CAD $1003 $FC03 $FC03

ERARNGE $1DA0 $1006 $FC06 $FC06

PRGRNGE $1CEC $1009 $FC09 $FC09

DELNUS $1D96 $100C $FC0C $FC0C
AN1831 — Rev. 2

12 MOTOROLA

Application Note
MC68HC908KX8 Trim Routine
This routine checks to see how many cycles are measured during a
break signal (10 low bits) sent at fOP/256 baud by a host and adjusts its
trim register. If the break signal is more than 25 percent variation from
what is expected (0.78-1.30 ms @ 9600), then ICG trimming will not be
performed. This ICG accuracy limit is consistent with the extent of the
ICG’s ability to fine tune the trim register.

The main timing loop of this routine begins at the leading edge of the
break signal and lasts until it sees the trailing edge. The break signal
lasts for 10 bit times. Since communicating at fOP ÷ 256 bps, then the
duration of 10 bit times is 2560 cycles. Each time through the loop is 10
cycles, so it is expected to execute the loop 256 times if the
MC68HC908KX8 is in sync serially with the host.

If the loop is executed for more than 256 loop cycles, then the
MC68HC908KX8 must be running faster than expected and needs to be
slowed down. If the loop is executed for less than 256 loop cycles, then
the MC68HC908KX8 must be running slower than expected and needs
to be speeded up. The amount that the CPU speed is changed is equal
to the number of loop cycles over or under 256. So if the loop is traversed
240 times, then we are running (256 – 240) ÷ 256 = 6.25 percent fast.

Each incremental change that is made to the trim register (ICGTR) will
result in a 0.195 percent change to the internal clock. That is,
incrementing the register by one over the default value of $80 stored
there will decrease the internal clock by 0.195 percent. Each execution
of the loop over or under what is expected (256 times) represents an
error of 1/256 = 0.391 percent error. So the number of loop cycles is

Table 7. Frequency, Baud Rate, Break Pulse Width

fOP
(MHz)

Baud Rate
(bps)

Break Pulse Width (ms)

Minimum Nominal Maximum

1.2288 4800 1.5623 2.083 2.604

2.4576 9600 0.781 1.042 1.302

3.6864 14400 0.365 0.521 0.651

4.9152 19200 0.195 0.260 0.325

7.3728 28800 0.098 0.130 0.163
AN1831 — Rev. 2

MOTOROLA 13

Application Note
doubled and this number is used to correct the trim register. The
precision for trimming is therefore 0.391 percent.

Another routine that is unique to the MC68HC908KX8 is called
ICGTEST. This routine simply toggles a port pin, port A4, at a rate that
is 1/16th of the operating frequency. This allows verification that the ICG
was trimmed accurately. ICGTEST is located at $1369.

Typical Routine Calls

This section provides examples of how these routines may be called.

The following code makes a call to the delay routine (DELNUS). Assume
fOP = 7.37 MHz, so the value passed in the accumulator is round
(fOP * 4) = 29 ($1D). The delay value is loaded into and passed through
the X register. For example, let’s use a value, TMERASEQ, which is the
desired delay time divided by 12.

DELAYCALL:
LDA #$1D ;fOP*4
LDX #TMERASEQ ;delay time/12
JSR DELNUS

The next block of code makes a call to the routine RDVRRNG to read
and verify a range of FLASH from $F000 to $F010. The accumulator is
cleared before calling the routine, which signals to the routine that the
specified range is to be sent out the communication port instead of being
copied into RAM.

The verify stage will be performed automatically and each byte in the
FLASH range will be compared to the corresponding byte in the data
array in RAM. That is, the first byte of the range, $F000, will be compared
with the first byte in the data array which is located at the 13th byte of
RAM by definition. This process is repeated for all bytes in the range and
if any of the comparisons is not equal, then the carry bit of the condition
code register will be cleared upon return from RDVRRNG. Otherwise, it
will be set. This code does not show the loading of the compare data into
RAM.
AN1831 — Rev. 2

14 MOTOROLA

Application Note
Typical Routine Calls
Before calling the routine, the high byte and low byte of the last address
of the range are placed in the 11th and 12th locations of RAM,
respectively, and the H:X register is loaded with the first address of the
range.

RDCALL:
CLRA ;COMMPORT IS DEST.
LDHX #$F010 ;LAST ADDRESS IS STORED AT LADDR
STHX LADDR
LDHX #$F000 ;FIRST ADDRESS IS STORED IN H:X
JSR RDVRRNG

The next few lines of code perform an erase of FLASH. The variable
CPUSPD located at the 10th location of RAM is set to a value which
reflects an 8-MHz operating frequency, that is 8 * 4 = 32 ($20). Since we
are calling the erase routine, we must specify what type of erase we want
to do: page erase or mass erase. This example illustrates the setup to
perform a mass erase where the mass bit, bit 6, in CTRLBYT at the ninth
location of RAM must be set. Any valid FLASH address is loaded into
H:X when doing a mass erase. In the case of a page erase, any address
within that page would be acceptable.

MASSERASE:
MOV #$20,CPUSPD ;SET CLOCK VALUE AT 8 MHZ
BSET6 CTRLBYT ;SET TO MASS ERASE HERE
LDHX #$F000 ;LOAD ANY FLASH ADDRESS IN H:X
JSR ERARNGE

To call GETBYTE to receive a byte of data on the communication port,
the only thing that needs to be done is to ensure that the communication
port is configured as an input. The next code example assumes that port
A0 is the communication port.

RECEIVEBYTE:
BCLR 0, DDRA ;CLEAR BIT 0 DATA DIRECTION

;REGISTER FOR INPUT ON PTA0
JSR GETBYTE
AN1831 — Rev. 2

MOTOROLA 15

Application Note
The final two examples show how to call the ICG trim routine resident in
MC68HC908KX8 ROM, and then call the test routine to verify the
accuracy of the internal clock. To set up for the call to trim the ICG,
several things must be done. First, we make sure that the ICG is enabled
(ICGON bit in the ICG trim register is set) and the internal clock is
selected (CS bit in the trim register is cleared). Then the accumulator is
set to select the port which is to receive the break signal. In this example,
port A0 is used as the communication port and the one where the break
signal will be received. To select port A0, the accumulator must contain
a non-zero value. We’ll also set this port as an input here.

TRIMTHEICG:
BCLR 0,DDRA ;SET PTA0 AS AN INPUT
MOV #$80,ICGTR ;SET THE TRIM REGISTER TO MIDPOINT
MOV #$08,ICGCR ;TURN ON THE ICG AND SELECT IT A

; CLOCK SOURCE
LDA #$FF ;ANY NON-ZERO VALUE TO SELECT PTA0

; FOR COMM
JSR ICGTRIM

There is no setup required to call the next routine which allows
monitoring of a set fraction of the operating frequency. The port used to
output 1/16th the operating frequency, port A4, is set as an output in the
routine. Therefore, only the call is required. To stop execution of this
routine, the IRQ pin needs to be pulled low. External interrupts can be
disabled (I bit set in the CCR) so as not to generate an inadvertent
interrupt when this pin is set low to exit this routine.

TESTTHEICG:
JSR ICGTEST
AN1831 — Rev. 2

16 MOTOROLA

Application Note
Example RAM Routine
Example RAM Routine

This section describes a program containing a RAM routine which could
be used in either monitor mode or user mode for the purpose of
programming one of these devices. In monitor mode, the routine could
be downloaded via monitor commands and in user mode the routine
could be copied to RAM from FLASH.

Those readers who have read In-Circuit Programming of FLASH
Memory in the MC68HC908GP20, Motorola document order number
AN1770/D, will recognize the content and structure of this program.
Refer to AN1770 for a complete description of the protocol used to send
programming commands and data to this routine. The PC-based host
program described in that application note has been expanded to
support the programming of these and other devices and is available in
the software library of the Motorola Web site at:

http://motorola.com/mcu

The RAM routine here is much smaller than that required for the
MC68HC908GP20 because it makes calls to the ROM routine rather
than have these routines included in the RAM routine. The latter
situation would not be practical in small RAM-array devices such as the
ones that include these routines. The source code for this program
follows. The user of this routine must make sure that the assembler
directives are set properly based on the device and the mode to be used.

This routine also differs from the GPZO’s in that it only supports monitor
comm port communication for both user and monitor mode
programming. Since the SCI is not available on two of these devices,
SCI communication is not described here. This program could be
modified easily to support user mode SCI programming.

This program does not include support for trimming the ICG in the
MC68HC908KX8. A RAM routine for monitor mode trimming or a
FLASH-based routine for user mode trimming could be generated by the
user. Note though that the host program referred to previously can be
used to send the break signal for automatic trimming.
AN1831 — Rev. 2

MOTOROLA 17

http://www.motorola.com/mcu/

Application Note
**
* FILE NAME: GKJJRR.ASM
* PURPOSE: Provides a FLASH erase, program, and verify program
* TARGET DEVICE: MC68HC908GR8, MC68HC908KX8, MC68HC908JL3/JK3 and the MC68HC908JB8
*
* ASSEMBLER: mcuEZ
* VERSION: 1.0.5
*
* PROGRAM DESCRIPTION:
* This program loads a RAM routine with instructions/data
* located in FLASH memory that:
* Receives data over the monitor comm. Port
* Calls ROM routine to program FLASH with received data
* Calls ROM routine to read/verify a FLASH range
* Calls ROM routine to bulk erase device upon command
*
* The program has assembler directives to be able to program each device in both
* user and monitor modes. In monitor mode, the generated S-record file will contain
* only the RAM routine. It will not have any code that would reside out of RAM.
* In user mode, load routines are incorporated so that it could be contained in a
* user's application. The load routines load the programming routines into RAM and
* from there it looks just like the RAM routine executed in monitor mode.
*
*
* AUTHOR: Grant Whitacre
* LOCATION: Austin, Texas
*
* UPDATE HISTORY:
* REV AUTHOR DATE DESCRIPTION OF CHANGE
* === ============ ======== =====================
* 0.0 G. WHITACRE 11/02/98 INITIAL VERSION
* 0.1 G. WHITACRE 01/19/99 MOD. FOR KX6
* 0.2 G. WHITACRE 04/22/99 MOD. FOR JL3
* 0.3 G. WHITACRE 11/18/99 MOD. FOR JB8, GR8
*
* GENERAL CODING NOTES:
* Bit names are labeled with <port name><bit number> and are used in the commands
* that operate on individual bits, such as BSET and BCLR. A bit name followed by a
* dot indicates a label that will be used to form a bit mask.
*
**
* ASSEMBLER DIRECTIVES
* (INCLUDES, BASE, MACROS, SETS, CONDITIONS, RAM DEFS, ETC.)
**
 BASE 10D ;DEFAULT TO BASE 10 NUMBER DESIGNATION

 ;Remember: ACTIVE LOW!!!!!!!!!!!!!!!
RAMPROG: SET 0 ;IF SET, ALL (NECESSARY) ROUTINES WILL BE
 ;ADDRESSED IN RAM INITIALLY;THIS VERSION
 ;WOULD BE USED AS THE S19 RECORD FILE

;THAT IS DOWNLOADED INTO RAM IN MONITOR
;MODE FOR FLASH PROGRAMMING
AN1831 — Rev. 2

18 MOTOROLA

Application Note
Example RAM Routine
* SELECT ONLY ONE OF THE FOLLOWING!
GR8: SET 1 ;SELECTS GR8 AS THE TARGET DEVICE
KX8: SET 1 ;SELECTS KX8 AS THE TARGET DEVICE
JB8: SET 1 ;SELECTS JB8 AS THE TARGET DEVICE
JL3: SET 0 ;SELECTS JL3 AS THE TARGET DEVICE
**
* APPLICATION-SPECIFIC MEMORY AND I/O EQUATES
**
* THE VALUE FOR SPDSET, WHICH IS THE fOP*4, normalizes delay routines
* to an absolute time.
SPDSET EQU 10 ;10 => 2.5 MHZ OPER. FREQ.
PTA EQU $00
PTB EQU $01
CONFIG1 EQU $1F
MASSBIT EQU 6 ;CTRLBYT MASS BIT = 6
RAMPRSZ EQU $50 ;NOT TO EXCEED SIZE OF RAM ROUTINE
RAMPRG EQU $AC ;START OF RAM ROUTINE
PRGSTRT EQU $F000 ;START OF FLASH PROGRAM
XFRCODE EQU PRGSTRT+RAMPRG
RSTVLOC EQU $FFFE ;RESET VECTOR LOCATION
FLCR EQU $FE08 ;FLASH CONTROL REGISTER

 IFEQ GR8
COMPORT EQU PTA
RAM EQU $40
GETBYTE EQU $1C99
RDVRRNG EQU $1CAD
ERARNGE EQU $1DA0
PRGRNGE EQU $1CEC
DELNUS EQU $1D96
GET_PUT EQU $FE99
GET_BIT EQU $FED2
PUT_BYTE EQU $FEAE
ROWSIZ EQU 32
FLBPR EQU $FF7E
 ENDIF
 IFEQ KX8
COMPORT EQU PTA
RAM EQU $40
GETBYTE EQU $1000
RDVRRNG EQU GETBYTE+3
ERARNGE EQU GETBYTE+6
PRGRNGE EQU GETBYTE+9
DELNUS EQU GETBYTE+12
GET_PUT EQU $FE97
GET_BIT EQU $FECE
PUT_BYTE EQU $FEAA
ROWSIZ EQU 32
FLBPR EQU $FF7E
 ENDIF
AN1831 — Rev. 2

MOTOROLA 19

Application Note
 IFEQ JL3
COMPORT EQU PTB
RAM EQU $80
GETBYTE EQU $FC00
RDVRRNG EQU GETBYTE+3
ERARNGE EQU GETBYTE+6
PRGRNGE EQU GETBYTE+9
DELNUS EQU GETBYTE+12
GET_PUT EQU $FEBD
GET_BIT EQU $FF00
PUT_BYTE EQU $FED0
ROWSIZ EQU 32
FLBPR EQU $FE09
 ENDIF
 IFEQ JB8
COMPORT EQU PTA
RAM EQU $40
GETBYTE EQU $FC00
RDVRRNG EQU GETBYTE+3
ERARNGE EQU GETBYTE+6
PRGRNGE EQU GETBYTE+9
DELNUS EQU GETBYTE+12
GET_PUT EQU $FEC0
GET_BIT EQU $FF00
PUT_BYTE EQU $FED5
ROWSIZ EQU 64
FLBPR EQU $FE09
 ENDIF

DATSTRC EQU RAM+8 ;Leave 8-bit offset from start of RAM for dev
tools

**
* VARIABLE DEFINITIONS & RAM SPACE USAGE
**
* DOWNLOADED SET FOR RTNS SIZE
* ---------- ----------------------------
* RAM - RAM+$07 RES. FOR DEV. TOOLS(8 BYTES)
* RAM+$08 TRANSFER SIZE CTRLBYT (1 BYTE)
* RAM+$09 FIRST ADDRESS CPUSPD (2/1 BYTE)
* RAM+$0A:RAM+$0BDATA SIZE LAST ADDRESS (1/2 BYTES)
* RAM+$0C:RAM+$0D DATA ARRAY DATA ARRAY (32 BYTES)
* $AC - $EB RAM PROGRAM (64 BYTES)
* $EC-$FF STACK (20 BYTES)
* TOTAL(128 BYTES)
 ORG RAM
TEMP2B RMB 2
TEMPH RMB 1
TEMPL RMB 1
 ORG DATSTRC
CTRLBYT RMB 1
CPUSPD RMB 1
LADDR RMB 2
DATA RMB ROWSIZ
**
AN1831 — Rev. 2

20 MOTOROLA

Application Note
Example RAM Routine
* Program Algorithm (User Mode Programming)
* 1. Initialize all variables and ports.
* 2. Monitor COMM port for input of block of data to be programmed and
* the start address. Load RAM with the data array (up to 64 bytes), the
* start address and length of data array.
* 3. Transfer the following subroutines to
* RAM at address RAMPRG
* A. LDDATA
* B. MAINPRG
* 4. Jump to first byte of main RAM program (RAMPRG).
* 5. Execute RAM program MAINPRG and then return to comm
* port monitoring loop in RAM.
*
* Program Algorithm - Monitor Mode Programming
* 1. Monitor comm port for input of block of data to be
* programmed and the start address. Load RAM with the data array (up to
* 64 bytes), the start address and length of data array.
* 2. Execute RAM program MAINPRG and then return to PTA0/PTB0
* monitoring loop in RAM.
**
* START OF PROGRAM
**
 IFNE RAMPROG
 ORG PRGSTRT
 CLR COMPORT
 MOV #$11,CONFIG1 ;DISABLE THE COP AND LVI
**
* NAME: LDRAMPR
* PURPOSE: LOADS MAIN RAM PROGRAM AND ALL NEC. SUBROUTINES
* ENTRY CONDITIONS: NONE
* EXIT CONDITIONS: NONE
* SUBROUTINES CALLED:
* EXTERNAL VARIABLES USED:
* DESCRIPTION: EXECUTED OUT OF FLASH
**
LDRAMPR LDHX #RAMPRG ;STORE THE START LOCATION IN RAM
 STHX TEMPH ;WHERE CODE IS TO BE TRANSFERRED
 LDHX #XFRCODE ;LOAD 1ST ADDR OF FLASH CODE TO BE
NXTMOVE MOV X+,TEMP2B ;TRANSFER LOCATION IN RAM
 PSHH ;
 PSHX ;PUSH CURRENT FLASH ADDDR TO STACK
 LDHX TEMPH ;LOAD ADDRESSES THAT HOLD THE DEST.
 MOV TEMP2B,X+ ;TRANSFER DATA FROM TRANSFER LOCATION
NEXT STHX TEMPH
 CPHX #RAMPRG+RAMPRSZ ;TO NEXT LOCATION AT RAM DESTINATION
 PULX ;POP CURRENT FLASH ADDR FROM STACK
 PULH
 BNE NXTMOVE ;IF NOT DONE, CONTINUE
 JMP RAMPRG

 ORG XFRCODE ;START OF CODE TO BE TRANSFERRED TO RAM
 ELSE
 ORG RAMPRG ;START OF MONITOR PROGRAM WHICH IS ORG'D

; IN RAM
 ENDIF
AN1831 — Rev. 2

MOTOROLA 21

Application Note
**
* NAME: LDDATA
* PURPOSE: LOAD RAM WITH USER'S DATA AND START ADDRESS VIA THE COMM PORT;
* PROGRAMS AND THEN DUMPS DATA THAT IS DOWNLOADED; ONLY DUMPS DATA
* IN ROW SPECIFIED IF NUMBER OF BYTES TO BE PROGRAMMED (DATASIZ) IS 0.
* ENTRY CONDITIONS:
* EXIT CONDITIONS:
* SUBROUTINES CALLED: PRGFLSH, DUMPROW
* EXTERNAL VARIABLES USED:
* DESCRIPTION: EXECUTED OUT OF RAM
* THE STRUCTURE OF THE DATA RECEIVED IS AS FOLLOWS:
* LOCATION DESCRIPTION RAM LOC.
* ======== ================================== ========
* 1 COUNT OF THE TOTAL NUMBER OF RAM+$08
* BYTES TO BE SENT (INCL. THAT BYTE)
* 2-3 THE FIRST ADDRESS WHERE THE RAM+$09 thru RAM+$0A
* FOLLOWING DATA IS TO BE PROGRAMMED
* 4 NUMBER OF BYTES TO BE PROGRAMMED RAM+$0B
* 5-68 ARRAY SPACE FOR DATA TO BE PROGRAMMED RAM+$0C thru RAM+$4B
*
* IF A COUNT IS USED THAT IS GREATER THAN (PROGRAM LENGTH + 1)
* THEN THE ROUTINE WILL HANG AFTER THE LAST PROGRAM BYTE IS SENT.
* CONTINUOUSLY LOOPS LOOKING FOR NEW DATA ON THE COMM PORT. MUST RESET
* AFTER THE LAST ROW DOWNLOAD.
* IF A DATA ARRAY IS RECEIVED WITH A NUMBER OF BYTES TO BE PROGRAMMED OF $FF
* THEN PROGRAM WILL CONSTRUE THIS AS A SIGNAL TO ERASE THE ENTIRE ARRAY. THIS
* WAS THE MOST CONVENIENT WAY TO IMPLEMENT BULK ERASE WITHOUT HAVING TO HAVE
* A COMMAND BYTE IN THE DATA STRUCTURE.
* TRANSFERRED PROGRAM SIZE
* =================== ============ ===========
* RAM+$08 TRANSFER SIZE CTRLBYT (1 BYTE)
* RAM+$09 FIRST ADDRESS (MSB) CPUSPD (1 BYTE)
* RAM+$0A FIRST ADDRESS (LSB) LAST ADDRESS (MSB) (1 BYTE
* RAM+$0B DATA SIZE (DATASIZ) LAST ADDRESS (LSB) (1 BYTE)
* RAM+$0C-RAM+$4B DATA ARRAY DATA ARRAY (64 BYTES)

LDDATA:
 CLRH
 LDX #CTRLBYT ;POINT TO LOCATION OF TRANSFER SIZE
WAITRX: JSR GET_PUT ;CALL TO ROUTINE IN MONITOR CODE
 CPX #CTRLBYT ;BAD START - KEEP LOOPING FOR NON-0
 BNE STORNOW
 TSTA
 BEQ WAITRX
STORNOW STA ,X ;STORE THE DATA IN RAM
 INCX ;MOVE TO NEXT RAM LOCATION
 DBNZ CTRLBYT,WAITRX ;DEC. PROG SIZE CNTR (1st BYTE)
 ;IF ENTIRE PROG NOT LODED, CONT.
CPARSE LDHX CPUSPD ;$89
 STHX TEMP2B ;MAINTAIN FIRST BYTE IN TEMP2B
 MOV #SPDSET,CPUSPD ;PUT THE CPU SPEED SELECTED IN EQUATE

; INTO CPUSPD ADDR
 MOV LADDR+1,TEMPH ;MAINTAIN DATASIZ IN TEMP

AN1831 — Rev. 2

22 MOTOROLA

Application Note
ROM Routines Source Code
 AIX #ROWSIZ-1 ;DO THIS FOR BOTH A DUMP OR A PROGRAM
 STHX LADDR ; "
 LDHX TEMP2B ; "

 LDA TEMPH ;IF SIZE OF DATA TO BE PROGRAMMED
 BEQ DUMPROW ;IS 0 THEN BRANCH TO DUMP
 COMA
 BEQ ERASE1 ;IF SIZE IS FFH, THEN BULK ERASE

JUSTPRG LDA #$FF
 STA FLBPR
 JSR PRGRNGE
 BRA DUMPROW

ERASE1 BSET MASSBIT,CTRLBYT
 JSR ERARNGE

DUMPROW LDHX TEMP2B
 CLRA
 JSR RDVRRNG
 BRA LDDATA

 IFNE RAMPROG
**
* INTERRUPT AND RESET VECTORS
**
 ORG RSTVLOC
RSTVEC FDB PRGSTRT
**
 ENDIF

ROM Routines Source Code

The following five flowcharts provide graphic explanations of the ROM
routines source code.
AN1831 — Rev. 2

MOTOROLA 23

Application Note
Figure 1. GETBYTE

GETBYTE

ROTATE C BIT
INTO B7 OF Acc

C BIT SET

RETURN

PURPOSE: GET A BYTE OF DATA ON PTA0. ATTEMPTS TO RECEIVE A
BYTE FROM THE EXTERNAL CONTROLLER VIA PORTA0. ONCE

CALLED, PROGRAM WILL REMAIN IN GETBYTE UNTIL A BYTE IS
RECEIVED. SIGNAL TO START RECEIVING A BYTE IS A VALID (LOW)

START BIT.

NOTE: CYCLE PATH FOR EACH BIT RECEPTION MUST BE KEPT THE
SAME TO MAINTAIN A STEADY BAUD RATE.

LOAD $80
IN Acc

IF RESULT IS GOOD,
THEN Acc = BYTE
RECEIVED. PORT A0
CONFIGURED AS AN
INPUT.

 PORT A0
 SET

YES

NO

YES

NO

CALL
GET_BIT

CALL
GET_BIT

GBIT

C BIT CLR
YES

CALL
GET_BIT

NO

STOPBIT

?

 ?

 ?
AN1831 — Rev. 2

24 MOTOROLA

Application Note
ROM Routines Source Code
Figure 2. RDVRRNG

RDVRRNG

STORE
DESTINATION

IN TEMP1

INIT TEMP2 =
FF AS COMPARE

STATUS

INIT TEMP0 =
FF AS INDEX
INTO DATA

GET FLASH
DATA FROM

FADDR

DEST. =
 SERIAL

 VERIFY
 FLASH DATA

= INPUT
DATA

STORE FAILURE
($7E) INTO

TEMP2

WRITE FLASH
DATA INTO

DATA

ACCUMULATE
CHECKSUM

INC FADDR

INC TEMP3 FOR
DATA POINTER

FADDR =
LADDR+1?

NO

NO

CALL
PUT_BYTE

YES

YES

YES

GET PASS/FAIL
FROM TEMP2

GET CHECKSUM

NO

RETURN

RDVRRNG020

RDVRRNG030

RDVRRNG010

PURPOSE: READ AND/OR VERIFY A RANGE OF FLASH
MEMORY

H:X CONTAINS THE FIRST ADDRESS OF THE
RANGE; LADDR CONTAINS THE LAST
ADDRESS TO BE READ; Acc CONTAINS THE
DESTINATION OF THE FIRST BYTE OF THE
READ DATA (0 = PTA0); DATA CONTAINS THE
DATA TO COMPARE THE READ DATA
AGAINST

 ?
AN1831 — Rev. 2

MOTOROLA 25

Application Note
Figure 3. PRGRNGE

PRGRNGE

SET I BIT
STACK

BUFFPTR = 0

STACK BYTECNT
= BYTES

BETWEEN
STARTADDR
AND END OF

PAGE

DESTADDR =
LADDR+1?

SET PGM BIT
 IN FLCR

RETURN

NO

READ FLBPR

NEXTPAGE

PURPOSE: PROGRAMS A RANGE OF
ADDRESSES IN FLASH MEMORY. ALLOWS
PROGRAMMING OF A RANGE OF ADDRESSES,
WHICH DOES NOT HAVE TO BE ON PAGE
BOUNDARIES, EITHER BEGINNING OR END.
FOR EXAMPLE, PROGRAMMING $F001 TO
$F008 IS VALID. THIS IS TO PREVENT
TRYING TO PROGRAM A NON-FLASH
ADDRESS AND GETTING BACK A BAD
VERIFICATION.

H:X CONTAINS THE FIRST
ADDRESS IN THE RANGE; CTRLBYT
SPECIFIES THE PROGRAMMING
MODE; LADDR CONTAINS THE LAST
ADDRESS TO BE READ; DATA
CONTAINS THE DATA TO BE
PROGRAMMED; CPUSPD CONTAINS
THE CPU SPEED FOR DELAY
ACCURACY

PRGSTP1

PRGSTP2

PRGSTP3

PRGSTP4

PRGSTP5

PRGSTP6

PRGSTP7

PRGSTP8

PRGSTP9

PRGSTP10

PRGSTP11

PRGSTP12

DELAY FOR
TNVS

SET HVEN BIT
IN FLCR

DELAY FOR
TPGS

WRITE TO
FIRST ADDRESS

OF RANGE

FETCH DATA
AT BUFFPTR
INTO DATA

ARRAY

STORE DATA
AT CURRENT

DESTINATION
ADDRESS

DELAY FOR
TPROG

DECREMENT
BYTECNT AND
COP LOOPING

VAR.

INCREMENT
DESTINATION
ADDRESS AND

BUFFPTR

DELAY FOR
TNVH

ADD BYTECNT
TO

DESTINATION
ADDR

CLEAR HVEN BIT
IN FLCR

CLEAR PGM BIT
IN FLCR

BYTECNT = 0

SET BYTECNT
TO PAGESIZ

DEST ADDR
= LADDR?

RECONCILE
STACK POINTER

NO

YES

YES

NO

YES

PRGSTP13

BUMP COP

SET COP
LOOPING

VARIABLE TO 6

COP LOOPING
 VARIABLE

= 0?

NO

CLEAR PGM AND
HVEN IN FLCR

YES

 ?
AN1831 — Rev. 2

26 MOTOROLA

Application Note
ROM Routines Source Code
Figure 4. DELNUS

DELNUS

SUBTRACT 1
FROM CPUSPD

(Acc)

Acc = 0

DECREMENT X
REGISTER

(DELAY VAR)

RETURN

PURPOSE: DELAY FOR N*12 US FOR fOP >= 1 MHZ;

D = (DELAY TIME[US]/12) IN X, C = (fOP[MHZ]*4)
IN Acc CYCLES = 5+(DELAY/12)* 3(4fOP-3)+9 =

5+DELAY*fOP

DECREMENT Acc

X CONTAINS THE TIME/12
OF DELAY (IN MICROSECONDS.);
Acc CONTAINS CPUSPD (CPU SPEED X 4);

1 MHZ

YES

NO

NXTX

POP CPU SPEED
FROM STACK

X = 0
NO

PUSH Acc
ONTO STACK

SUBTRACT 2
FROM CPUSPD

(Acc)

YES

CPU SPEED MUST BE >=

 ?

 ?
AN1831 — Rev. 2

MOTOROLA 27

Application Note
Figure 5. ERARNGE

ERARNGE

RETURN

PURPOSE: ERASE A RANGE OF ADDRESSES IN FLASH MEMORY.
PRESERVES THE CONTENTS OF H:X (ADDRESS PASSED).

H:X CONTAINS AN
ADDRESS IN THE RANGE
TO BE ERASED; RANGE
SIZE SPECIFIED
BY CONTROL BYTE

STACK ADDRESS
PASSED IN H:X

SET HVEN BIT
IN FLCR

WRITE
CONTENT OF

Acc TO
ADDRESS

SPECIFIED IN
H:X

READ THE
BLOCK PROTECT

REGISTER

CALL
DELNUS
WITH

TERASEQ
IN H:X AND

CPUSPD
IN Acc

CLEAR ERASE
AND MASS BITS

IN FLCR

CALL
DELNUS
WITH

TNVHLQ
IN H:X AND

CPUSPD
IN Acc

CLEAR HVEN BIT
IN FLCR

RESTORE
ADDRESS

PASSED FROM
STACK TO H:X

MASSBIT
SET IN

CTRLBYT?

SET MASS BIT
IN FLCR

SET ERASE BIT
IN FLCR

CALL
DELNUS

WITH
TNVSQ IN
H:X AND

CPUSPD IN
Acc

MASSBIT
SET IN

CTRLBYT?

MASSBIT
SET IN

CTRLBYT?

CALL
DELNUS
WITH

TNVHQ IN
H:X AND
CPUSPD
IN Acc

YES NO

YES

NO

YES

MASSBIT
SET IN

CTRLBYT?

WRITE TO THE
BLOCK PROTECT

REGISTER

YES

NO

BUMP COP

BUMP COP

LOOP
COUNTER

 = 0?

SET DELAY
LOOP CNTR

FOR 5

DECREMENT
LOOP COUNTER

SET DELAY
LOOP CNTR

FOR 20

NO

NO

YES
AN1831 — Rev. 2

28 MOTOROLA

Application Note
ROM Routines Source Code
ROM Routines Source Code

**
* FILE NAME: MAINPR.ASM
* PURPOSE: To provide FLASH erase, program and verify routines
* to reside in ROM.
* TARGET DEVICE: MC68HC908GR8, MC68HC908KX8, MC68HC908JL3/JK3 and the MC68HC908JB8
*
* MEMORY USAGE - RAM: 4-36 BYTES, DEPENDING ON DATA PASSED
* ROM: 364 BYTES
*
* ASSEMBLER: MCUEZ
* VERSION: 1.0.5
*
* PROGRAM DESCRIPTION:
* This program contains a structure of routines to facilitate FLASH programming.
* These routines, which are individually callable, are intended to reside in ROM
* for the use of a user program, a test/burn-in program, or for development/programming
* tools. This set of routines is included, along with definition files, by the project
* file 9GR8ALLROM.ASM.
*
* AUTHOR: Grant Whitacre
* LOCATION: Austin - Oak Hill, Texas
*
* UPDATE HISTORY:
* REV AUTHOR DATE DESCRIPTION OF CHANGE
* === ============ ======== =====================
* 0.0 G. WHITACRE 10/05/98 Initial release
* 0.1 G. WHITACRE 02/17/99 MODIFIED FOR THE SST FLASH
* 0.2 G. WHITACRE 08/23/99 MODIFIED GETBYTE FOR 9600
* BAUD @ 2.4576 MHZ
*
* GENERAL CODING NOTES:
* Bit names are labeled with <port name><bit number> and are used in the commands that
* operate on individual bits, such as BSET and BCLR. A bit name followed by a dot
* indicates a label that will be used to form a bit mask.
**
**
* INCLUDED FILES
**
* INCLUDE "E:\MMDS\GR8\SSTROM\H908GR8.FRK"
**
* EQUATES
**
* PROGRAMMING TIMES IN µs
* FOLLOWING DEFINED IN .FRK FILE
*TPROG EQU 40 ;FLASH Byte Program Time
*TERASE EQU 1000 ;FLASH Page Erase Time
*TMERASE EQU 4000 ;FLASH Mass Erase Time
*TNVS EQU 10 ;FLASH PGM/ERASE to HVEN Setup Time
AN1831 — Rev. 2

MOTOROLA 29

Application Note
*TPGS EQU 5 ;FLASH Program Hold Time
*TNVH EQU 5 ;FLASH High-Voltage Hold Time
*TNVHL EQU 100 ;FLASH High-Voltage Hold Time (Mass Erase)
*TRCV EQU 1 ;FLASH Return to Read Time

* TIMES REPRESENT VALUES THAT ARE PASSED TO THE DELAY ROUTINE, WHICH
* DELAYS FOR X 12 µs FOR VALUES PASSED. FOR TERASE AND TMERASE, THE
* ROUTINE IS CALLED 5 AND 20 (12 µs*17*20=4080 µs) TIMES,
* RESPECTIVELY, WITH A BUMP OF THE COP BEFORE EACH CALL
ECALLS EQU 5
MECALLS EQU 20
TPROGQ EQU 3 ;FLASH Program Time
TERASEQ EQU 17 ;FLASH Block Erase Time
TMERASEQ EQU 17 ;FLASH Mass Erase Time
TNVSQ EQU 1 ;FLASH PGM/ERASE to HVEN Setup Time
TPGSQ EQU 1 ;FLASH Program Hold Time
TNVHQ EQU 1 ;FLASH High-Voltage Hold Time
TNVHLQ EQU 8 ;FLASH High-Voltage Hold Time (Mass Erase)
TRCVQ EQU 1 ;FLASH Return to Read Time

**
* ROUTINES
**
**
* NAME: GETBYTE
* PURPOSE: Get a byte of data on PTA0
* Entry Conditions: Port A0 configured as an input.
* Exit Conditions: Acc=byte received.
* If break received or result bad then send break and
* jump back to start.
* Port A0 configured as an input.
* SUBROUTINES CALLED: GET_BIT
* VARIABLES READ:
* VARIABLES MODIFIED:
* STACK USED: 4
* SIZE: 20 BYTES
* DESCRIPTION: EXECUTED OUT OF ROM
* Attempts to receive a byte from the external controller via PortA0.
* Once called, program will remain in GETBYTE until a byte is received
* Signal to start receiving a byte is a valid (low) start bit.
* NOTE: Cycle path for each bit reception must be kept the same to maintain
* a steady baud rate.
* BIT TIMING = 9+(17+10*23) = 256 CYCLES @ 2.4576 MHZ = 104 µs = 9600 BAUD
**
GETBYTE:

BRSET0 ,PTA,GETBYTE ;Waiting for start edge.
JSR GET_BIT ;try to receive a full start bit.
BCS GETBYTE ;Success?
LDA #$80 ;initialize receiver.

GBIT: ;got start bit, now get byte.
JSR GET_BIT ;5
AN1831 — Rev. 2

30 MOTOROLA

Application Note
ROM Routines Source Code
RORA ;1 bit into Acc
BCC GBIT ;3 get next bit

* ;baud calculation
STOPBIT:

JSR GET_BIT ;look for stop bit
RTS

**
**
* NAME: RDVRRNG
* PURPOSE: Read and/or Verify a range of FLASH memory
* ENTRY CONDITIONS: H:X contains the first address of the range;
* LADDR contain the last address to be read;
* Acc contains a Boolean to see if read data
* goes to PTA0 (0=PTA0, else Data Array)
* DATA contains the data to compare the read data against
* EXIT CONDITIONS: C bit is set if good compare; Acc contains checksum;
* DATA contains read FLASH data
* SUBROUTINES CALLED:
* VARIABLES READ: LADDR, DATA ARRAY
* VARIABLES MODIFIED: DATA ARRAY
* STACK USED: 6
* SIZE: 63 BYTES
* DESCRIPTION: EXECUTED OUT OF ROM; ALTHOUGH THIS ROUTINE SERVICES THE COP,
* THERE COULD STILL BE A COP TIME OUT UNDER CERTAIN CONDITIONS. THESE CONDITIONS
* ARE: 1) IN USER MODE, 2) COP ENABLED, 3) USING THE SHORT COP TIMEOUT, 4) NOT USING
* THE PLL SUCH THAT fOP = CGMXCLK/4
**
RDVRRNG:

PSHA ;(A)SAVE DESTINATION FLAG ON STACK AS 4,SP
CLRA ;LOCAL VARIABLE FOR CHECKSUM STARTS AT 00
PSHA ;(B)SAVE ON STACK AS 3,SP

 ;LOCAL VARIABL FOR INDEX INTO DATA STARTS AT 00
PSHA ;(C)SAVE ON STACK AS 2,SP
COMA ;LOCAL VARIABLE FOR VERIFY STATUS (FF = GOOD)
PSHA ;(D)SAVE ON STACK AS 1,SP

RDVRRNG010:
STA $FFFF ;BUMP THE COP
LDA ,X ;LOAD CONTENT OF FLASH ADDRESS INTO ACC.
TST 4,SP ;CHECK DESTINATION FLAG
BEQ RDVRRNG020 ;SKIP COMPARE IF DESTINATION IS PTA0
PSHX ;(E)STORE FADDR FOR LATER
PSHH ;(F)
LDX 4,SP ;GET INDEX INTO DATA FROM STACK
CLRH
CMP DATA,X ;COMPARE ADDR NOW IN X SO COMPARE CONTENT
BEQ RDVRRNG015 ;IF EQUAL THEN KEEP GOING...
STA DATA,X ;WRITE FLASH DATA THAT IS DIFFERENT TO RAM
LDX #$7E ;FAILED VERIFICATION SO CLEAR VERIFY STATUS
STX 3,SP ;MUST KEEP DATA IN ACC FOR CHECKSUM BELOW

RDVRRNG015:
PULH ;(F')GET FADDR BACK
AN1831 — Rev. 2

MOTOROLA 31

Application Note
PULX ;(E')
BRA RDVRRNG030

RDVRRNG020: ;NOT COMPARING, JUST DUMPING
JSR PUT_BYTE ;WRITE DATA TO PORT A0...

 ;PUT_BYTE SAVES A, X, AND H
RDVRRNG030:

ADD 3,SP ;ADD VALUE OF CURRENT BYTE TO CHECKSUM
STA 3,SP ;MAINTAIN AS RUNNING SUM
INC 2,SP ;INCREMENT INDEX INTO DATA
CPHX LADDR ;COMPARE SOURCE ADDR TO THE LAST ADDRESS
BHS NOMO ;IF NOT YET DONE, LOOP FOR ANOTHER
AIX #1 ;INCREMENT SOURCE ADDRESS
BRA RDVRRNG010

NOMO PULA ;(D')GET PASS/FAIL INFO INTO
TAP ; CARRY BIT
PULA ;(C')TRASH INDEX INTO DATA
PULA ;(B')RETURN CHECKSUM IN ACC.
AIS #1 ;(A')TRASH DESTINATION FLAG
RTS

**
**
* NAME: PRGRNGE
* PURPOSE: Programs a range of addresses in FLASH memory
* ENTRY CONDITIONS: H:X contains THE FIRST address in the range;
* CTRLBYT contains the Control Byte that specifies
* the programming mode; LADDR contains the last address
* to be read; DATA contains the data to be programmed
* EXIT CONDITIONS: Next address in H:X
* SUBROUTINES CALLED: DELNUS
* VARIABLES READ: CONTROL BYTE, CPUSPD, LADDR, DATA ARRAY
* VARIABLES MODIFIED:
* SIZE: 170 BYTES
* STACK SIZE (INCLUDING CALL): 7 BYTES
* DESCRIPTION: EXECUTED OUT OF ROM
* Allows passing of a range of addresses to PRGRNGE, which does not have
* to be on row boundaries, either beginning or end. I.e., passing $F001 to
* $F008 is valid. This is to prevent trying to program a non-FLASH address.
**
PRGRNGE:

SEI ;MASK INTERRUPTS SO THAT DELAYS ARE NOT
; AFFECTED

CLRA ;STORES INDEX INTO DATA ARRAY
PSHA ;(A) INDEX INTO DATA IS ON STACK
PSHX ;(B)SAVE FADDR SO THAT IT IS NOT DESTROYED
PSHH ;(C)
TXA ;GET (FADDR MODULUS ROWSIZE)
LDX #ROWSIZ
CLRH ;HIGH BYTE CAN BE IGNORED BECAUSE ROWSIZE

 ; IS ALWAYS A POWER OF TWO AND 256 OR LESS.
 ; IT MUST BE IGNORED SO THAT RESULT OF DIVIDE
 ; WILL FIT IN ONE BYTE.
AN1831 — Rev. 2

32 MOTOROLA

Application Note
ROM Routines Source Code
DIV ;DIVIDE LEAVES REMAINDER (MODULUS) IN H
PSHH ;(D)PUSH REMAINDER IN H ONTO STACK
TXA ;MOVE ROWSIZE TO ACC
SUB 1,SP ;SUBTRACT REMAINDER TO GET #BYTES TO PROGRAM
PULH ;(D')PULL REMAINDER FROM STACK AND THROW AWAY
PULH ;(C')GET FADDR BACK FROM STACK
PULX ;(B')
PSHA ;(B)STORE #BYTES TO END OF ROW ON STACK
PSHA ;(C) RESERVE A STACK LOC. FOR COP LOOPING VAR.

 ;3,SP = COP LOOPING VARIABLE
 ;4,SP = #BYTES TO END OF ROW
 ;5,SP = INDEX INTO DATA ARRAY
PRGSTP1:

STA $FFFF ;BUMP COP
LDA #$06 ;SET LOOPING VARIABLE TO ALLOW FOR COP BUMP;
STA 1,SP ;NEED TO TURN OFF PGM AND HVEN OCCASIONALLY TO

; BUMP COP
 LDA #PGM. ;SET PGM BIT
 ORA FLCR
 AND #$F9 ;($FF-MERASE.-ERASE.)

;MAKE SURE ERASE BITS ARE OFF
STA FLCR ;WRITE THIS TO THE FLASH CONTROL REG.

PRGSTP2 LDA FLBPR ;READ FROM BLOCK PROT. REG.

PRGSTP3:
IFEQ TESTMOD
LDA ,X
ENDIF
IFNE TESTMOD
STA ,X ;WRITE TO ANY FLASH ADDRESS WITHIN THE ROW
ENDIF

;TO BE PROGRAMMED WITH ANY DATA
PSHH ;(D)
PSHX ;(E)

PRGSTP4 LDX #TNVSQ ;DELAY FOR TNVS

LDA CPUSPD
BSR DELNUS

PRGSTP5 LDHX #FLCR ;SET THE HVEN BIT IN FLCR
LDA ,X
ORA #HVEN.
STA ,X

PRGSTP6 LDX #TPGSQ ;DELAY FOR TIME TPGS

LDA CPUSPD
BSR DELNUS

PULX ;(E')
PULH ;(D'

**
AN1831 — Rev. 2

MOTOROLA 33

Application Note
* NEED TO PROGRAM 6 BYTES, TURN OFF PGM AND/OR HVEN, BUMP COP, PROGRAM ANOTHER
* 6 BYTES, THEN REPEAT PROCESS UNTIL FINISHED WITH RANGE
**
PRGSTP7PSHH ;(D)

PSHX ;(E)
 ;1,SP = ADDR(LSB)
 ;2,SP = ADDR(MSB)
 ;3,SP = COP LOOPING VARIABLE
 ;4,SP = #BYTES TO END OF ROW
 ;5,SP = INDEX INTO DATA ARRAY

CLRH ;GET 0:BUFFPTR INTO H:X
LDX 5,SP ;GET THE INDEX INTO DATA ARRAY
LDA DATA,X ;LOAD BYTE TO PROG FROM DATA+BUFFPTR
PULX ;(E') POP LO BYTE OF ADDR BACK INTO X
PULH ;(D')

 IFEQ TESTMOD
LDA ,X

 ENDIF
 IFNE TESTMOD

STA ,X ;STORE DATA TO ADDR SPEC.BY H-X
 ENDIF

PSHH ;(D)
PSHX ;(E)

PRGSTP8 LDX #TPROGQ ;DELAY FOR TPROG
LDA CPUSPD
BSR DELNUS
PULX ;(E')
PULH ;(D')

PRGSTP9:

AIX #$01 ;INCREMENT THE DESTINATION ADDRESS
INC 3,SP ;INCREMENT THE POINTER INTO DATA
DEC 2,SP ;DECREMENT THE BYTE COUNTER
DEC 1,SP ;DECREMENT COP LOOPING VARIABLE
CPHX LADDR ;CHECK FOR END OF RANGE
BHI PRGSTP10 ;EXIT LOOP IF PAST END OF RANGE
TST 2,SP ;CHECK FOR END OF ROW
BEQ PRGSTP10 ;EXIT LOOP IF DONE WITH ROW

 TST 1,SP
BNE PRGSTP7 ;COP VAR = 0?
BSR CLR_P_H ;

 TAX
BRA PRGSTP1 ;

PRGSTP10:

BSR CLR_P_H ;CALL RTN TO CLEAR PGM AND HVEN
NEXTROW: ;DONE WITH ROW, GET READY TO EXIT
 ;1,SP = COP LOOPING VARIABLE
 ;2,SP = #BYTES TO END OF ROW
 ;3,SP = INDEX INTO DATA ARRAY

ADD 2,SP ;ADD BYTES PROGRAMMED TO LOW BYTE
AN1831 — Rev. 2

34 MOTOROLA

Application Note
ROM Routines Source Code
TAX
PSHH ;(D) CORRECT HIGH BYTE FOR CARRY, IF ANY
PULA ;(D')
ADC #0
PSHA ;(D)
PULH ;(D')

LDA #ROWSIZ ;
STA 2,SP ;#BYTES TO END OF ROW IS ROWSIZE
AIX #-1 ;DECREMENT CURRENT ADDRESS BY 1 TO COMP.

; TO LAST ADDR
CPHX LADDR ;COMPARE FADDR TO LADDR
AIX #1
BLO PRGSTP1 ;PROGRAM ANOTHER ROW IF LESS OR EQUAL

PRGSTP13: ;NEXT 3 INST. TAKE > 1 µs.

PULA ;(C')REMOVE COP LOOP VARIABLE
PULA ;(B')REMOVE #BYTES TO END OF ROW
PULA ;(A')REMOVE INDEX INTO DATA ADDRESS

DONEPRG RTS

* FOLLOWING LOCAL SUB-ROUTINE CLEARS PGM, DELAYS, THEN CLEARS HVEN.
CLR_P_H PSHH ;(D)

PSHX ;(E)
LDHX #FLCR ;CLEAR PGM BIT
LDA ,X
EOR #PGM.
STA ,X

PRGSTP11:
LDX #TNVHQ ;DELAY FOR TNVH
LDA CPUSPD
BSR DELNUS

PRGSTP12:
LDHX #FLCR ;CLEAR THE HVEN BIT
LDA ,X
EOR #HVEN.
STA ,X
PULA ;(E')
PULH ;(D')
RTS

**
AN1831 — Rev. 2

MOTOROLA 35

Application Note
**
* NAME: DELNUS
* PURPOSE: Delay N ms
* ENTRY CONDITIONS: X CONTAINS THE TIME/12 OF DELAY (IN ms).
* A CONTAINS THE CPU SPEED X 4 (2 BITS OF PRECISION)
* EXIT CONDITIONS:
* SUBROUTINES CALLED:
* VARIABLES READ:
* VARIABLES MODIFIED:
* SIZE: 10 BYTES
* STACK USED (INCLUDING CALL): 3 BYTES
* DESCRIPTION: EXECUTED OUT OF ROM
* Delay Routine for fOP >= 1 MHz, Delay >= 12 ms
* (delay time[µs]/12) in H:X, (fOP[MHz]*4) in Acc
* If fOP > 1 then
* CYCLES = 5+Delay/12[3(4fOP-3)+9] = 5+DELAY*fOP
* If fOP = 1 then CYCLES = 5+12(DELAY/12) = 5+DELAY
* where delay in µs and fOP in MHz
**
DELNUS: DECA ;1 CYCLE
NXTX PSHA ;2

DECA ;1
DECA ;1
DBNZA * ;3
PULA ;2
DBNZX NXTX ;3
RTS ;4

**
**
* NAME: ERARNGE
* PURPOSE: Erase a range of addresses in FLASH memory
* ENTRY CONDITIONS: H-X contains an address in the range to be erased; range size
* specified by Control Byte
* If b6 = 1 then mass erase, otherwise erase
* 1 page (64 bytes for the GR8).
* EXIT CONDITIONS: Preserves the contents of H:X (address passed)
* SUBROUTINES CALLED: DELNUS
* VARIABLES READ: CTRLBYT, CPUSPD
* VARIABLES MODIFIED:
* STACK USED: 5
* SIZE: 99 BYTES
* DESCRIPTION: Does not check for a blank range before (to see if erase
* is necessary) or after (to see if successful erase)
**
ERARNGE:

SEI
PSHH ;KEEP ADDRESS PASSED
PSHX

CLRA ;SET ERASE BIT, AND
ORA #ERASE.
AN1831 — Rev. 2

36 MOTOROLA

Application Note
ROM Routines Source Code
BRCLR MASSBIT,CTRLBYT,AMBS
ORA #MASS. ;MASS BIT IF NECESSARY

AMBS: STA FLCR
ERABLK LDA FLBPR ;READ THE BLOCK PROTECT REGISTER
 IFEQ TESTMOD ;WRITE TO ANY ADDRESS IN ERASE RANGE

LDA FLBPR
LDA ,X

 ENDIF
 IFNE TESTMOD

BRCLR MASSBIT,CTRLBYT,NOBLWR
STA FLBPR

NOBLWR STA ,X
 ENDIF

LDX #TNVSQ ;DELAY FOR TNVS
LDA CPUSPD
BSR DELNUS

LDHX #FLCR ;SET THE HVEN BIT IN FLCR
LDA ,X
ORA #HVEN.
STA ,X

BRCLR MASSBIT,CTRLBYT,RWERASE
LDA #MECALLS ;DELAY LOOPS FOR TMERASE
BRA ERADEL ; OR

RWERASE LDA #ECALLS ;DELAY LOOPS FOR TERASE

ERADEL PSHA ;STACK INCREMENT COUNTER
BUMPCOP STA $FFFF ;BUMP COP

LDX #TERASEQ ;SAME FOR TERASEQ AND TMERASEQ
LDA CPUSPD
BSR DELNUS
DEC 1,SP
BNE BUMPCOP
PULA ;PULL INCREMENT CNTR OFF STACK
STA $FFFF ;BUMP COP WHEN DONE DELAYING
LDHX #FLCR ;CLEAR THE ERASE BIT

LDA ,X
EOR #ERASE.
AND #($FF-MASS.) ;CLEAR MASS BIT
STA ,X

BRCLR MASSBIT,CTRLBYT,PGSTUP
LDHX #TNVHLQ ;DELAY FOR TNVHL
BRA STUPDEL ; OR

PGSTUP LDHX #TNVHQ ;DELAY FOR TNVH
STUPDEL LDA CPUSPD
 BSR DELNUS

AN1831 — Rev. 2

MOTOROLA 37

Application Note
LDHX #FLCR ;CLEAR THE HVEN BIT
LDA ,X
EOR #HVEN.
STA ,X

XERARNG PULX ;RESTORE ADDRESS PASSED
PULH ;THESE 3 INST. DELAY FOR
RTS ;AT LEAST 1 µs (TRCV)

**

NOTE: The following routines are resident in the MC68HC908KX8 only.

**
* ROUTINE NAME: ICGTRIM
* PURPOSE: AN ICG TRIM ROUTINE BASED ON THE MEASUREMENT OF THE
* LENGTH OF A BREAK SIGNAL SENSED ON PTA0 OR PTB4/RXD.
* ENTRY CONDITIONS: ICG IS ENABLED (ICGON IS SET); INTERNAL CLOCK IS SELECTED
* (CS IS CLEARED); ACC IS CLEARED TO SELECT PTB4/RxD TO MONITOR
* BREAK SIGNAL, ACC IS NON-ZERO TO SELECT PTA0; PORT USED HAS
* BEEN CONFIGURED IN SW AS AN INPUT AND IN HW FOR NRZ
* COMMUNICATION.
* EXIT CONDITIONS: CARRY BIT IS SET IF ICG WAS TRIMMED SUCCESSFULLY;
* MONITOR PORT CONFIGURED AS AN INPUT
* SUBROUTINES CALLED: NONE
* VARIABLES READ: PTA OR PTB
* VARIABLES MODIFIED: ICGTR, ICGCR, ICGMR
* STACK USED: 1 BYTE
* SIZE: 67 BYTES
* DESCRIPTION: EXECUTED OUT OF ROM, THIS ROUTINE CHECKS TO SEE HOW
* MANY CYCLES ARE MEASURED DURING A BREAK SIGNAL (10 LOW BITS)
* SENT AT 9600 BAUD BY A HOST AND ADJUSTS ITS TRIM AND MULTIPLIER
* REGISTERS. IF THE BREAK SIGNAL IS MORE THAN 25% VARIATION FROM
* WHAT IS EXPECTED (.78-1.30 µs @ 9600), THEN ICG TRIMMING WILL
* NOT BE PERFORMED. THIS ICG ACCURACY LIMIT IS CONSISTENT WITH
* THE EXTENT OF THE ICG'S ABILITY TO FINE-TUNE THE TRIM REGISTER.
**
ICGTRIM:
 MOV #$20,ICGMR ;SET ICG TO 307.2 KHZ * 32 = 9.8304 MHZ

BRCLR ICGS,ICGCR,* ;WAIT FOR CLOCK TO STABILIZE
CLRX
CLRH
TSTA ;SEE IF PTA0 OR PTB4 IS USED
BEQ MONPTB4 ;BRANCH IF BLANK TO MONITOR PTB4
BRSET 0,PTA,* ;WAIT FOR BREAK SIGNAL TO START

* FOLLOWING LOOP IS EXECUTED UNTIL THE END OF THE BREAK SIGNAL. THE BREAK
* SIGNAL LASTS 10 BIT TIMES. IF COMMUNICATING AT fOP/256 BPS, THEN 10 BIT
* TIMES IS 2560 CYCLES. EACH TIME THROUGH THE LOOP IS 10 CYCLES, SO WE
* EXPECT TO EXECUTE THE LOOP 256 TIMES IF THE KX8 IS IN SYNC SERIALLY WITH
* THE HOST. IF WE STAY IN THE LOOP FOR > 256 LOOP CYCLES, THEN THE KX8
* MUST BE RUNNING FASTER THAN EXPECTED, AND NEEDS TO BE SLOWED DOWN. IF WE
AN1831 — Rev. 2

38 MOTOROLA

Application Note
ROM Routines Source Code
* STAY IN THE LOOP FOR < 256 LOOP CYCLES THEN THE KX8 MUST BE RUNNING SLOWER
* THAN EXPECTED AND NEEDS TO BE SPEEDED UP. THE AMOUNT THAT WE CHANGE THE
* CPU SPEED IS EQUAL TO THE NUMBER OF LOOP CYCLES OVER OR UNDER 256. SO IF
* WE GO THROUGH THE LOOP 240 TIMES, THEN WE ARE RUNNING
* (256-240)/256 = 6.25% FAST. EACH INCREMENTAL CHANGE WE MAKE TO THE TRIM REGISTER
* (ICGTR) WILL MAKE A 0.195% CHANGE TO THE INTERNAL CLOCK. THAT IS, INCREMENTING
* THE REGISTER BY ONE OVER THE DEFAULT VALUE OF $80 STORED THERE WILL
* DECREASE THE INTERNAL CLOCK BY 0.195%, AND VICE VERSA.
* NOW EACH EXECUTION OF THE LOOP OVER OR UNDER WHAT IS EXPECTED (256 TIMES)
* REPRESENTS AN ERROR OF 1/256 = .391% ERROR. SO WE'LL NEED TO DOUBLE THE
* NUMBER OF LOOP CYCLES AND USE THIS NUMBER TO CORRECT THE TRIM REGISTER.
* OUR PRECISION FOR TRIMMING IS THEREFORE 0.391%.
*
* COUNTS RECEIVED AT DEVICE BAUD RATE OF 9600 (fOP = 2.4576 MHZ):
* BAUD RATE EXPECTED COUNT MIN COUNTS MAX COUNTS ICGMR VAL
* ========= ============== ========== ========== =========
* 9600 256 (0100H) 192 (00C0H) 320 (0140H) $20

CHKPTA0 BRSET 0,PTA,BRKDONE ;(5) GET OUT OF LOOP IF BREAK IS OVER
AIX #1 ;(2) INCREMENT THE COUNTER
BRA CHKPTA0 ;(3) GO BACK AND CHECK SIGNAL AGAIN

MONPTB4 BRSET 4,PTB,* ;WAIT FOR BREAK SIGNAL TO START
CHKPTB4 BRSET 4,PTB,BRKDONE ;(5) GET OUT OF LOOP IF BREAK IS OVER
 AIX #1 ;(2) INCREMENT THE COUNTER
 BRA CHKPTB4 ;(3) GO BACK AND CHECK SIGNAL AGAIN

BRKDONE PSHH
PULA ;PUT HIGH BYTE IN ACC AND WORK WITH A:X
TSTA ;IF MSB OF LOOP CYCLES = 0, THEN BREAK TAKES TOO
TXA ;FEW CYCLES THAN EXPECTED, SO TRIM BY SPEEDING
BEQ SLOW ;UP fOP.

FAST CMP #$40 ;SEE IF BREAK IS WITHIN TOLERANCE
BGE OOR ;DON'T TRIM IF OUT OF RANGE
ADD #$80 ;BREAK LONGER THAN EXPECTED, SO SLOW DOWN fOP
BRA ICGDONE

SLOW CMP #$C0 ;SEE IF BREAK IS WITHIN TOLERANCE
BLT OOR ;DON'T TRIM IF OUT OF RANGE
SUB #$80

ICGDONE STA ICGTR
 IFEQ TESTMOD

BSR ICGTEST
 ENDIF
EXITTRM SEC ;SET CARRY SIGNIFYING TRIM OCCURRED

RTS
OOR CLC ;CLEAR CARRY SIGNIFYING NOT TRIMMED

RTS
AN1831 — Rev. 2

MOTOROLA 39

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note

* NAME: ICGTEST
* PURPOSE: Following tests the above ICG settings to see if the internal clock is set
* at the desired rate. Internal clock rate is 16x frequency sensed at bit 4 of port A.
* ENTRY CONDITIONS: NONE
* EXIT CONDITIONS: IRQ PULLED LOW TO EXIT, PTA4 SET AS OUTPUT
* SUBROUTINES CALLED: NONE
* VARIABLES READ:
* VARIABLES MODIFIED: PTA, DDRA
* STACK USED: 0
* SIZE: 13 BYTES
* DESCRIPTION: EXECUTED OUT OF ROM
**
ICGTEST BSET 4,DDRA ;bit 1 set as output
BITOFF BCLR 4,PTA ;4 cycles

BIL EXITLP ;3 cycles
NOP ;1 cycle

BITON BSET 4,PTA ;4 cycles
NOP ;1 cycle
BRA BITOFF ;3 cycles

EXITLP RTS ;16 cycles
**
AN1831/D

© Motorola, Inc., 2001

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334

Technical Information Center: 1-800-521-6274

HOME PAGE: http://www.motorola.com/semiconductors/

	Introduction
	FLASH Overview
	The Routines
	GETBYTE
	RDVRRNG
	PRGRNGE
	ERARNGE
	DELNUS

	Defined Constants
	Variables
	The Data Structure
	Addresses of Routines
	MC68HC908KX8 Trim Routine
	Typical Routine Calls
	Example RAM Routine
	ROM Routines Source Code
	ROM Routines Source Code

