Order this document

AR MOTOROLA ot

digital dna-

Semiconductor Products Sector A N 1831

Application Note

Using MC68HC908 On-Chip FLASH Programming Routines

ROM-Resident Routines in the MC68HC908GR8, MC68HC908K X8,
MC68HC908JL 3, MC68HC908JK3, and the MC68HC908JB8

By Grant Whitacre
MMD Applications Engineering
Austin, Texas

Introduction

This application note describes how to use the routines that are stored
in ROM (read-only memory) in the MC68HC908GR8, MC68HC908K X8,
MC68HC908JL3/JK3, and the MC68HC908JB8 microcontrollers
(MCU).

These routines are used to program, erase, and verify FLASH memory
and may be accessed in either user mode or monitor mode®. There are
additional routines in the MC68HC908KX8 to trim the internal clock
generator, which are also described herein. This document describes
the method of calling each of the routines in the collection and specifies
what is performed and returned as confirmation of routine execution.

To illustrate how these routines are used in practice, a program is
included, which can be configured for use in any of these devices to
program FLASH in either user mode or monitor mode.

1. These routines are accessible in both user mode and monitor mode in all listed devices except
the MC68HC908GRS. This device allows access to these routines in monitor mode only.

© Motorola, Inc., 2001

intelligence everywhere

Application Note

FLASH Overview

In addition, a host program, downloadable from the Motorola Web site,
has been developed to provide a PC interface to download this program
to a device to program FLASH.

The routines described here have been incorporated into ROM on these
particular devices, which do not have enough RAM to allow for this
functionality in a RAM routine. The type of FLASH for which these
routines are applicable is called "split gate” FLASH because of the type
of technology used, TSMC FLASH after the fabrication plant, or SST
FLASH after the company who originally designed it.

Split gate FLASH has significant advantages. Some of these
advantages are:

» Faster programming time. It takes 30 to 40 ps to program each
byte, which translates to a little more than a quarter second of
programming time to program an entire 8-Kbyte array.

» Better endurance. This type of FLASH is specified to withstand at
least 10,000 program/erase cycles. Older technologies provided
only about 100 program/erase cycles.

» Simpler programming algorithm. The programming algorithm for
split gate FLASH is a simple process of turning on high voltage,
applying it to the row to be programmed, and writing values to
each byte to be programmed in turn. This differs from past
technology which required an iterative process of turning on high
voltage and applying it to a page, writing values to each byte in the
page, checking all bytes for valid values in a "margin” read
condition, and then repeating the program/verify process until all
bytes are verified correctly.

Split gate FLASH is programmed generally on a row basis and erased
on a page basis. Also, the entire array can be mass erased. A page
always contains two rows, but the size of the page can vary from one
device to another. A typical page size is 64 or 128 bytes. Before
reprogramming a byte in one row that is currently programmed with a

AN1831 —Rev.2

MOTOROLA

The Routines

Application Note
The Routines

different value, the entire page must be erased and reprogrammed.
Refer to the applicable data manual for the proper program and erase
procedure for this FLASH.

GETBYTE

AN1831 — Rev. 2

The collection consists of five callable(® routines and each is described
in Table 1. These routines are explained briefly here, but the parameters
and the passing method are addressed in later sections.

GETBYTE is a routine that receives a byte on the monitor mode
communication port defined for that particular device, and this received
value is passed back to the calling routine in the accumulator. For these
devices, the communication port is either port AO or port BO. Check
Table 3 for the constant definition for COMMPORT for the port used for
each device. This routine expects the same non-return-to-zero (NRZ)
communication protocol and baud rate that is used in monitor mode®).
The difference between this routine’s method of receiving a byte and
when the monitor receives a byte is that the monitor echoes back
whatever is received. It may be more efficient for a RAM program to use
this routine when receiving data from a host, to eliminate the time
overhead in sending out every byte that is received. This is especially
true if the host program and RAM routine already have a built-in error
detection scheme, such as a message checksum, and there might not
be a need to do an echo check for each byte sent.

2. These routines are accessible in both user mode and monitor mode in all listed devices except
the MC68HC908GRS. This device allows access to these routines in monitor mode only.

3. The baud rate will be f5p/256 for all but the MC68HC908JBS8. In this device, the bit rate for this
routine as well as for the monitor mode send/receive routines have been changed to accom-
modate a "standard" fop for this device considering it is a USB part. The bit rate for the
MC68HC908JB8 is fop/208.

MOTOROLA

Application Note

RDVRRNG

PRGRNGE

RDVRRNG routine serves two purposes:
e It can be used to read a range of FLASH locations.

* It can be used to verify a range of FLASH locations with data
contained in the data array in RAM.

Actually, both functions are performed each time the routine is called,
and the data in the specified FLASH range is returned. A degree of
flexibility with this routine is that one can specify where the data is to be
returned. If the accumulator is 0 when entering RDVRRNG, then the
data read will be sent to the monitor mode communication port. If the
accumulator is non-zero, then the data is placed in RAM in the data
array, replacing the existing contents. The beginning and end of the
range to be read and/or verified are specified as parameters to this
routine. The carry bit of the condition code register is set if the data in the
specified range is verified successfully against the data in the data array.
One more added function of this routine is that it does a checksum on
the data returned. This checksum, which is the LSB of the sum of all
bytes in the entire data collection, is stored in the accumulator upon
return from the function.

PRGRNGE is used to program a range of FLASH locations with data
loaded into the data array. As with RDVRRNG, the start and end location
of the range of addresses to be programmed is passed by parameter. A
check to see that all bytes in the specified range are erased is not
performed by this routine prior to programming. Nor does this routine do
a verification after programming, so there is no return confirmation that
programming was successful. It should be noted that PRGRNGE returns
with the first-address variable, FADDR, set to the address of the next
byte after the range just programmed. The last-address variable LADDR
is not changed. Also, since this routine calls the delay routine DELNUS,
parameter passing requirements for that routine must be met when
calling PRGRNGE.

Another point worth noting is that this routine allows any range to be
passed to it. That is, the range does not have to be coincident with row
boundaries. The range specified can be at the beginning of a row, the
middle of a row, the end of a row, or it can be a range overlapping row

AN1831 —Rev.2

MOTOROLA

NOTE:

ERARNGE

CAUTION:

AN1831 — Rev. 2

Application Note
The Routines

boundaries. The only two things that the user must assure is that the
range specified is first erased and that whatever is specified as the
range, the data for the range must be in the data array in RAM.

This routine can be used in conjunction with RDVRRNG to perform a
complete program and verification cycle of the specified range.

ERARNGE can be called to erase a range of locations in FLASH. This
routine does not use the last address (LADDR) variable. The first
address (FADDR) placed in H:X in the two previous routines actually can
be any address in the range to be erased. There are only two sizes of
erase ranges: a page or the entire array. Therefore, this routine needs to
be told what type of erase is desired. This is done by setting a bit called
the mass bit in a control variable in RAM called CTRLBYT. This is
explained in more detail later in Variables.

Using ERARNGE to erase a page on the MC68HC908GRS,
MC68HC908KX8, or MC68HC908K X2 causes the erase of the vector
page when called to erase another page of FLASH. This behavior is a
side effect of servicing the computer operating properly (COP) during
this routine’s necessary delay of 1 millisecond. The workarounds for this
behavior are:

1. Set block protection so that at least the vector page is protected
from erase and inadvertent reprogramming. Then any page
erases, other than an attempt to erase the vector page, will result
in the intended page being erased, but the vector page will remain
intact.

2. Accept the erase of the vector page by first buffering the data of
this page in RAM and then, after the intended page is erased
along with the vector page, reprogram the vector page with the
buffered data.

3. Do not use this erase routine in ROM. Write your erase routine and
keep it in FLASH. Whenever a page erase is desired, copy the
routine to RAM and execute the erase from there. Be sure to omit
instructions that service the COP.

MOTOROLA

Application Note

DELNUS

The last routine is a delay routine used in support of the PRGRNGE and
ERARNGE routines. It can, however, be called independently. DELNUS
takes two parameters — one signifying the operating frequency passed
via the accumulator and the other, a single byte value passed in the X
register, specifying the length of the delay. Neither of these parameters
is passed as an absolute value. The operating frequency variable is a
value four times that of fop actually used, and this value has an allowable
lower limit of four representing 1-MHz operation. The delay value passed
represents the number of 12 microsecond increments for the delay.
Therefore, the resolution of the delay is 12 microseconds. The minimum
delay is, of course, 12 microseconds and the maximum delay for this
routine is a little more than 3 milliseconds (255 * 12 ps). The precision of
the delay is very high considering that it is normalized to the frequency
of operation which can be specified to within 0.25 MHz. The worst
precision occurs for short delays at relatively slow operating frequencies,
where both values passed are midway between possible values™.

When the delay routine is called by PRGRNGE or ERARNGE (the only
routines in this collection which call the delay routine), the calling routine
loads the X register with the value of the delay needed. The frequency
parameter is loaded into the accumulator by reading the RAM variable
CPUSPD. This variable, therefore, must be pre-loaded by the RAM
routine calling PRGRNGE or ERARNGE.

4. An example of this worst-case error would be an fop of 1.125 MHz and a desired delay of
18 pus. For these conditions, a value for the frequency parameter could be either 4 or 5, signi-
fying an fop of 1.00 or 1.25 MHz, respectively. The delay value passed could be either 1 or 2,
signifying 12 or 24 s delay, respectively. In a case like this, choose the lower value for one
parameter and the upper value for the other parameter to minimize the error of the delay.

AN1831 —Rev.2

MOTOROLA

Table 1. FLASH Routines

Application Note
The Routines

Rﬁ:g:}e GETBYTE RDVRRNG PRGRNGE ERARNGE DELNUS
Routine Gets a byte Reads and/or Programs a Erases** a page Delays for
o . L
Description of data from verlfles_a range range of or the entire nx12 s
comm port of locations locations range
Comm port H:X contains first | H-X contains first | H:X contains any | X contains
configured address of address of address in time + 12 of
as an input range; LADDR range; LADDR range to be delay (in ps);
contains last contains last erased; range Acc contains
address read; address to be size specified 4 times fop
Acc is tested to programmed,; by control byte;
E see if read data DATA contains CPUSPD
ntry X "
Conditions goes to comm data used contains 4 * fgp
port during
(Acc = $00) or programming;
to DATA;DATA CPUSPD
contains data contains 4 * fop
against which
to compare
read data
Acc is loaded | Chitissetifgood | H:X containsnext | Preserves
with byte compare; Acc address after contents of H:X
Exit received contains range just (address
Conditions checksum; programmed passed)
DATA may
contain read
FLASH data
Subroutines | Get_Bit DELNUS DELNUS
Called
LADDR, DATA CONTROL Control Byte,
Variables ARRAY BYTE, LADDR, CPUSPD
Read DATA ARRAY,
CPUSPD
Variables DATA ARRAY
Modified
Stack Used | 4 bytes 6 bytes 7 bytes 5 bytes 3 bytes

*Allows programming of a range of addresses, which does not have to be on a row boundary, either beginning or end. For
example, programming $F001 to $F008 is valid.

** Does not check for a blank range before (to see if erase is necessary) or after (to see if successful erase)

AN1831 — Rev. 2

MOTOROLA

Application Note

Defined Constants

Table 2 lists the various constants defined for these routines. All but the
FLCR address relate to delays used during programming and erasing.
The constants ending in a Q are values passed to the delay routine. As
mentioned previously, the delay routine takes a parameter which
represents the number of 12 microsecond increments of delay time.
Therefore, program time, TPROG, which is specified as a time between
30 and 40 microseconds, has a duration here of 12 times TPROGQ, or
36 microseconds.

Page erase and mass erase delays are done the same way, except that
the routines are called ECALLS and MECALLS times, respectively.
Therefore, a mass erase delay, which is specified to be 4000
microseconds, is actually 20 delays each with a duration of

17 * 12 microseconds, which results in a total mass erase delay of 4080
microseconds (MECALLS * TMERASEQ * 12 microseconds).

Table 2. Constants Used in Routines

Constant Description Value
Name

FLCR FLASH control register address $FEO8
TPROGQ Program time 3
TERASEQ Erase time 17
TMERASEQ Mass erase time 17
TNVSQ HVEN setup time 1
TPGSQ Program hold time 1
TNVHQ HV hold time 1
TNVHLQ HV hold time (mass erase) 8
TRCVQ Return to read time 1
ECALLS Calls to delay for page erase 5
MECALLS Calls to delay for mass erase 20

AN1831 —Rev.2

8 MOTOROLA

Application Note
Variables

Because of the differences in some of the constants used for each
device, the following constants need to be specific to the particular

device. Table 3 shows the constant values for each device. Since these

values are device-specific, they have not been included in the source
code in ROM Routines Source Code.

Table 3. Device-Specific Values for Constants

Constant Description MC68HC MC68HC MC68HC MC68HC
Name P 908GR8 908K X8 908JL3/JK3 908JB8
RAM Start address of RAM $40 $40 $80 $40
Rowsiz | Size of row for 32 32 32 64
programming
COMMPORT | Communication portfor PTAO PTAO PTBO PTAO
monitor mode
FLASH block protect
FLBPR register address $FF7E $FF7E $FEO9 $FEO9
Address of routine to
get and then output a
Get_Put byte on the comm $FE99 $FE97 $FEBD $FECO
port (monitor code)
Address of routine to
output a byte on
Put_Byte communication port $FEAE SFEAA $FEDO $FED5
(monitor code)
Address of routine to
. get a bit on
Get_Bit communication port $FED2 $FECE $FFOO0 $FFOO0
(monitor code)
Variables

AN1831 — Rev. 2

Table 4 shows the variables used in the routines. These variables are

either passed in a register or as static variables in a predefined location
in RAM. FADDR is a 2-byte value that represents the first address in the
range on which to be operated. It is passed in the H:X registers when a
call is made to one of the routines. The first address of a range can be

MOTOROLA

Application Note

any valid FLASH address and does not have to be on a row or page
boundary.

LADDR is the last address in the range and is passed in the first byte of
the data structure in RAM. This data structure is very simple, consisting
of the last address, the CPU speed variable, a control byte, and the data
array. It is discussed in detail in The Data Structure. The last address,
like the first address, can be any valid FLASH address and is not
restricted to being the last byte of a page or row.

The internal operating frequency of the device on which the FLASH
operation is to be performed is passed in a variable called CPUSPD. It
is a 1-byte value which is passed in the data structure and should be
given as the rounded product of four times the actual internal operating
frequency, such that if fop is 2.4576 MHz, then the value passed should
be decimal 10, or $0A. This variable is used to normalize the length of
delays with respect to the operating frequency, and passing a value four
times the actual frequency provides better resolution.

The remaining operating parameter used in these routines is a single bit
value in the control byte. This bit is called the mass bit and is set when
calling ERARNGE to perform a mass erase. If ERARNGE is called with
the intention of performing a page erase, then the mass bit must be
cleared. The other bits in CTRLBYT are not used and can be set at the
user’s discretion for other flags.

Table 4. Variables Used in Routines

. o . Location/Passing
Variable Name Description Size Method
FADDR First addres; of range 2 bytes H-X
of locations
LADDR Last address_ of range 2 bytes Data structure
of locations
CPUSPD 4 x fop 1 byte Data structure
CTRLBYT Mass bit (bit 6) 1 byte Data structure
DATA Data array Variable Data structure

AN1831 —Rev.2

10

MOTOROLA

Application Note
The Data Structure

The Data Structure

The data structure is a collection of static variables in RAM used in the
execution of the three main routines — PRGRNGE, ERARNGE, and
RDVRRNGE. The data structure is in the same relative location in RAM
and the content is the same data and order for all of the devices
containing these ROM routines. The structure always starts in the ninth
byte of RAM and the order of the variables is as shown in Table 5.

Table 5. Data Structure Location and Content

Location Variable Size Description
Name (Bytes) P
RAM + $08 | CTRLBYT 1 Includes mass flag as bit 6
RAM + $09 | CPUSPD 1 CPU speed passed as 4 x fop
RAM + $0A Last address for read a range
RAM + $0B LADDR 2 and program a range
Variable number of bytes of passed
RAM + $0C DATA Variable data for programming or verifying
a block

Note that the data array DATA is variable in length. This is done to
support a variable number of locations on which to perform any of the
programming, reading, or verifying actions. Most of the time, these
actions will be performed on a row of data at one time, although that
need not be the case. Some of these devices have a rather small RAM
array, and the size of the data array must be limited to the size of RAM
minus the stack needed and the size of any RAM routine being
executed. If the RAM routine is kept to a reasonable size, then there
should not be a problem defining the data array to be the size of a row
for any of the devices in this collection.

AN1831 — Rev. 2

MOTOROLA 11

Application Note

Addresses of Routines

The address to call each of the five routines varies among the devices.
Table 6 gives the absolute address that should be used when calling the
routines.

Table 6. Addresses of Routines

Routine MC6868HC MC68HC MC68HC MC68HC
908GR8 908K X8 908JL3/JK3 908JB8
GETBYTE $1C99 $1000 $FCO00 $FCO00
RDVRRNG $1CAD $1003 $FCO03 $FCO03
ERARNGE $1DA0 $1006 $FC06 $FC06
PRGRNGE $1CEC $1009 $FC09 $FC09
DELNUS $1D96 $100C $FCOC $FCOC

MC68HC908K X8 Trim Routine

The MC68HC908KX8 contains two additional routines in ROM, which
have been included to support the trimming of the internal clock
generator (ICG) module. ICGTRIM is located at $1330 in the
MC68HC908KX8 and can be called to trim the ICG by measuring the
pulse width of a break signal received on port AO or port B4. The baud
rate used for the break signal must be equal to the internal frequency of
the device divided by 256. Communication must be in conformance with
normal monitor mode communication, that is, non-return-to-zero (NRZ2)
format. A break signal is defined as 10 consecutive low bits, so the pulse
width of this signal is nominally 1.04 milliseconds at 9600 baud. This
signal must be within 25 percent of the nominal value or the routine will
not attempt to trim the ICG.

Table 7 specifies the relationship between the internal frequency, the
baud rate, and the pulse width of the break signal.

AN1831 —Rev.2

12

MOTOROLA

AN1831 — Rev. 2

Application Note
MC68HC908KX8 Trim Routine

Table 7. Frequency, Baud Rate, Break Pulse Width

fop Baud Rate Break Pulse Width (ms)
(MH2) (bps) Minimum Nominal Maximum
1.2288 4800 1.5623 2.083 2.604
2.4576 9600 0.781 1.042 1.302
3.6864 14400 0.365 0.521 0.651
4.9152 19200 0.195 0.260 0.325
7.3728 28800 0.098 0.130 0.163

This routine checks to see how many cycles are measured during a
break signal (10 low bits) sent at fop/256 baud by a host and adjusts its
trim register. If the break signal is more than 25 percent variation from
what is expected (0.78-1.30 ms @ 9600), then ICG trimming will not be
performed. This ICG accuracy limit is consistent with the extent of the
ICG’s ability to fine tune the trim register.

The main timing loop of this routine begins at the leading edge of the
break signal and lasts until it sees the trailing edge. The break signal
lasts for 10 bit times. Since communicating at fop + 256 bps, then the
duration of 10 bit times is 2560 cycles. Each time through the loop is 10
cycles, so it is expected to execute the loop 256 times if the
MC68HC908KX8 is in sync serially with the host.

If the loop is executed for more than 256 loop cycles, then the
MC68HC908KX8 must be running faster than expected and needs to be
slowed down. If the loop is executed for less than 256 loop cycles, then
the MC68HC908KX8 must be running slower than expected and needs
to be speeded up. The amount that the CPU speed is changed is equal
to the number of loop cycles over or under 256. So if the loop is traversed
240 times, then we are running (256 — 240) + 256 = 6.25 percent fast.

Each incremental change that is made to the trim register (ICGTR) will
result in a 0.195 percent change to the internal clock. That is,
incrementing the register by one over the default value of $80 stored
there will decrease the internal clock by 0.195 percent. Each execution
of the loop over or under what is expected (256 times) represents an
error of 1/256 = 0.391 percent error. So the number of loop cycles is

MOTOROLA

13

Application Note

doubled and this number is used to correct the trim register. The
precision for trimming is therefore 0.391 percent.

Another routine that is unique to the MC68HC908KXS8 is called
ICGTEST. This routine simply toggles a port pin, port A4, at a rate that
is 1/16th of the operating frequency. This allows verification that the ICG
was trimmed accurately. ICGTEST is located at $1369.

Typical Routine Calls

This section provides examples of how these routines may be called.

The following code makes a call to the delay routine (DELNUS). Assume
fop = 7.37 MHz, so the value passed in the accumulator is round

(fop * 4) = 29 ($1D). The delay value is loaded into and passed through
the X register. For example, let's use a value, TMERASEQ, which is the
desired delay time divided by 12.

DELAYCALL:
LDA #$1D fopd
LDX #TMERASEQ ;del ay time/12

JSR DELNUS

The next block of code makes a call to the routine RDVRRNG to read
and verify a range of FLASH from $F000 to $F010. The accumulator is
cleared before calling the routine, which signals to the routine that the
specified range is to be sent out the communication port instead of being
copied into RAM.

The verify stage will be performed automatically and each byte in the
FLASH range will be compared to the corresponding byte in the data
array in RAM. That s, the first byte of the range, $F000, will be compared
with the first byte in the data array which is located at the 13th byte of
RAM by definition. This process is repeated for all bytes in the range and
if any of the comparisons is not equal, then the carry bit of the condition
code register will be cleared upon return from RDVRRNG. Otherwise, it
will be set. This code does not show the loading of the compare data into
RAM.

AN1831 —Rev.2

14

MOTOROLA

Application Note
Typical Routine Calls

Before calling the routine, the high byte and low byte of the last address
of the range are placed in the 11th and 12th locations of RAM,
respectively, and the H:X register is loaded with the first address of the

range.
RDCALL:
CLRA ; COWPORT | S DEST.
LDHX #$F010 . LAST ADDRESS |'S STORED AT LADDR
STHX LADDR
LDHX #$F000 ; FIRST ADDRESS |'S STORED IN H: X

JSR RDVRRNG

The next few lines of code perform an erase of FLASH. The variable
CPUSPD located at the 10th location of RAM is set to a value which
reflects an 8-MHz operating frequency, thatis 8 * 4 = 32 ($20). Since we
are calling the erase routine, we must specify what type of erase we want
to do: page erase or mass erase. This example illustrates the setup to
perform a mass erase where the mass bit, bit 6, in CTRLBYT at the ninth
location of RAM must be set. Any valid FLASH address is loaded into
H:X when doing a mass erase. In the case of a page erase, any address
within that page would be acceptable.

MASSERASE:
MOV #$20, CPUSPD ; SET CLOCK VALUE AT 8 MHZ
BSET6 CTRLBYT ; SET TO MASS ERASE HERE
LDHX #$F000 ; LOAD ANY FLASH ADDRESS I N H: X

JSR ERARNGE

To call GETBYTE to receive a byte of data on the communication port,
the only thing that needs to be done is to ensure that the communication
port is configured as an input. The next code example assumes that port
A0 is the communication port.

RECEI VEBYTE:
BCLR 0, DDRA ; CLEAR BI'T 0 DATA DI RECTI ON
; REG STER FOR | NPUT ON PTAQ
JSR GETBYTE

AN1831 — Rev. 2

MOTOROLA 15

Application Note

The final two examples show how to call the ICG trim routine resident in
MC68HC908KX8 ROM, and then call the test routine to verify the
accuracy of the internal clock. To set up for the call to trim the ICG,
several things must be done. First, we make sure that the ICG is enabled
(ICGON bit in the ICG trim register is set) and the internal clock is
selected (CS bit in the trim register is cleared). Then the accumulator is
set to select the port which is to receive the break signal. In this example,
port AO is used as the communication port and the one where the break
signal will be received. To select port AO, the accumulator must contain
a non-zero value. We’'ll also set this port as an input here.

TRI MTHEI CG:
BCLR 0, DDRA ; SET PTAO AS AN | NPUT
MOV #$80, | CGTR ; SET THE TRIM REG STER TO M DPO NT
MOV #$08, | CGCCR ; TURN ON THE | CG AND SELECT IT A
; CLOCK SOURCE
LDA #SFF ; ANY NON- ZERO VALUE TO SELECT PTAO
FOR COW
JSR | CGTRI M

There is no setup required to call the next routine which allows
monitoring of a set fraction of the operating frequency. The port used to
output 1/16th the operating frequency, port A4, is set as an output in the
routine. Therefore, only the call is required. To stop execution of this
routine, the IRQ pin needs to be pulled low. External interrupts can be
disabled (I bit set in the CCR) so as not to generate an inadvertent
interrupt when this pin is set low to exit this routine.

TESTTHEI CG
JSR | CGTEST

AN1831 —Rev.2

16 MOTOROLA

Application Note
Example RAM Routine

Example RAM Routine

AN1831 — Rev. 2

This section describes a program containing a RAM routine which could
be used in either monitor mode or user mode for the purpose of
programming one of these devices. In monitor mode, the routine could
be downloaded via monitor commands and in user mode the routine
could be copied to RAM from FLASH.

Those readers who have read In-Circuit Programming of FLASH
Memory in the MC68HC908GP20, Motorola document order number
AN1770/D, will recognize the content and structure of this program.
Refer to AN1770 for a complete description of the protocol used to send
programming commands and data to this routine. The PC-based host
program described in that application note has been expanded to
support the programming of these and other devices and is available in
the software library of the Motorola Web site at:
http://motorola.com/mcu

The RAM routine here is much smaller than that required for the
MC68HC908GP20 because it makes calls to the ROM routine rather
than have these routines included in the RAM routine. The latter
situation would not be practical in small RAM-array devices such as the
ones that include these routines. The source code for this program
follows. The user of this routine must make sure that the assembler
directives are set properly based on the device and the mode to be used.

This routine also differs from the GPZQO’s in that it only supports monitor
comm port communication for both user and monitor mode
programming. Since the SCI is not available on two of these devices,
SCI communication is not described here. This program could be
modified easily to support user mode SCI programming.

This program does not include support for trimming the ICG in the
MC68HC908KX8. A RAM routine for monitor mode trimming or a
FLASH-based routine for user mode trimming could be generated by the
user. Note though that the host program referred to previously can be
used to send the break signal for automatic trimming.

MOTOROLA

17

http://www.motorola.com/mcu/

Application Note

* %

L I S T T T T . S B T I T T R B B B N T I N S R R

* %

*

*

* %

EE R R R R R R R R R R R R R R R R R I R R I I I I R I R I R

FI LE NAME: GKJJRR. ASM
PURPCSE: Provi des a FLASH erase, program and verify program
TARGET DEVI CE: MC68HCO08GR8, MC68HCI08KX8, MC68HC908JL3/ JK3 and t he MC68HC908JB8

ASSEMBLER: ntuEZ
VERSION: 1.0.5

PROGRAM DESCRI PTI ON:
This programloads a RAMroutine with instructions/data
| ocated in FLASH nmenory that:
Recei ves data over the nonitor comm Port
Calls ROMroutine to program FLASH with received data
Calls ROMroutine to read/verify a FLASH range
Calls ROMroutine to bul k erase device upon comrand

The program has assenbler directives to be able to program each device in both
user and nonitor nodes. In nmonitor node, the generated S-record file will contain
only the RAMroutine. It will not have any code that would reside out of RAM

In user node, load routines are incorporated so that it could be contained in a
user's application. The | oad routines |oad the progranm ng routines into RAM and
fromthere it |ooks just like the RAMroutine executed in nmonitor node.

AUTHOR: Grant Witacre
LOCATI ON: Austin, Texas

UPDATE HI STCRY:

REV AUTHOR DATE DESCRI PTI ON OF CHANGE
0.0 G VHI TACRE 11/ 02/ 98 I NI TI AL VERSI ON

0.1 G VH TACRE 01/ 19/ 99 MOD. FOR KX6

0.2 G VH TACRE 04/ 22/ 99 MOD. FOR JL3

0.3 G VH TACRE 11/18/99 MOD. FOR JB8, GRS

GENERAL CODI NG NOTES:

Bit names are | abel ed with <port nanme><bit nunber> and are used in the commands
that operate on individual bits, such as BSET and BCLR. A bit nane foll owed by a
dot indicates a label that will be used to forma bit mask.

KRRk b S b S R R I Rk S O R R R kR R Rk I b O O R I R I O O b O

ASSEMBLER DI RECTI VES
(1 NCLUDES, BASE, MACROS, SETS, CONDI TI ONS, RAM DEFS, ETC.)

EE R R R R R R R R R I S R I R R I I O I R I R I R O

BASE 10D ; DEFAULT TO BASE 10 NUMBER DESI GNATI ON

; Remenber: ACTIVE LONTIITTLETTIETT]

RAMPROG SET 0 ;| F SET, ALL (NECESSARY) ROUTI NES W LL BE

; ADDRESSED | N RAM | NI TI ALLY; THI S VERSI ON
; WOULDBE USEDAS THE S19 RECORDFI LE

; THAT1 SDOWNLOADEDI NTORAMI NMONI TOR

; MODE FOR FLASH PROGRAMM NG

AN1831 —Rev.2

18

MOTOROLA

Application Note
Example RAM Routine

* SELECT ONLY ONE OF THE FOLLOW NG

GR8: SET 1 ; SELECTS GR8 AS THE TARGET DEVI CE
KX8: SET 1 ; SELECTS KX8 AS THE TARGET DEVI CE
JB8: SET 1 ; SELECTS JB8 AS THE TARCET DEVI CE
JL3: SET O ; SELECTS JL3 AS THE TARCET DEVI CE

Rk Ik SR b kb R R R O S I R R S S Rk kR R S O S S S R R I O b S

* APPLI CATI ON- SPECI FI C MEMORY AND |/ O EQUATES

ER R R R R R R R R R R R R R R R R R I R I R I I R I I R I R I I R R R R

* THE VALUE FOR SPDSET, WHICH IS THE f op*4, normalizes delay routines
* to an absolute tine.

SPDSET EQU 10 10 => 2.5 MHZ OPER FREQ
PTA EQU $00
PTB EQU $01
CONFI Gl EQU $1F
MASSBI T EQU 6 . CTRLBYT MASS BIT = 6
RAVPRSZ EQU $50 ' NOT TO EXCEED S| ZE OF RAM ROUTI NE
RAVPRG EQU $AC - START OF RAM ROUTI NE
PRGSTRT EQU $F000 - START OF FLASH PROGRAM
XFRCODE EQU PRGSTRT+RAVPRG
RSTVLOC EQU $FFFE - RESET VECTOR LOCATI ON
FLCR EQU $FE08 . FLASH CONTROL REG STER
| FEQ GR8
COVPORT EQU PTA
RAM EQU $40
GETBYTE EQU $1099
RDVRRNG EQU $1CAD
ERARNGE EQU $1DA0
PRGRNGE EQU $1CEC
DELNUS EQU $1D96
GET_PUT EQU $FE99
GET BIT EQU $FED2
PUT_BYTE EQU $FEAE
ROWSI Z EQU 32
FLBPR EQU $FF7E
ENDI F
| FEQ KX8
COVPORT EQU PTA
RAM EQU $40
GETBYTE EQU $1000
RDVRRNG EQU GETBYTE+3
ERARNGE EQU GETBYTE+6
PRGRNGE EQU GETBYTE+9
DELNUS EQU GETBYTE+12
GET_PUT EQU $FE97
GET BIT EQU $FECE
PUT_BYTE EQU $FEAA
ROWSI Z EQU 32
FLBPR EQU $FF7E
ENDI F

AN1831 — Rev. 2

MOTOROLA 19

Application Note

| FEQ JL3
COVPORT EQU PTB
RAM EQU $80
GETBYTE EQU $FC00
RDVRRNG EQU GETBYTE+3
ERARNGE EQU GETBYTE+6
PRGRNGE EQU GETBYTE+9
DELNUS EQU GETBYTE+12
GET_PUT EQU $FEBD
GET_BIT EQU $FFO0
PUT_BYTE EQU $FEDO
ROWEI Z EQU 32
FLBPR EQU $FEO09

ENDI F

| FEQ JB8
COVPORT EQU PTA
RAM EQU $40
GETBYTE EQU $FC00
RDVRRNG EQU GETBYTE+3
ERARNGE EQU CGETBYTE+6
PRGRNGE EQU CGETBYTE+9
DELNUS EQU CGETBYTE+12
GET_PUT EQU $FECO
GET_BIT EQU $FFO0
PUT_BYTE EQU $FED5
ROWEI Z EQU 64
FLBPR EQU $FEO09

ENDI F
DATSTRC EQU RAM+8 ; Leave 8-bit offset fromstart of RAMfor dev
tool s

* %

*

* %

EE R R R R R R I R R R S R I R R I S I O R I R I R O

VARI ABLE DEFI NI TI ONS & RAM SPACE USACE

KRRk b S b S R R I Rk S O S O R R R I Rk ok S I O R R I S kO b O

* DOVINL OADED SET FOR RTNS Sl ZE

*

* RAM - RAMH$07 RES. FOR DEV. TOOLS(8 BYTES)

* RAMF$08 TRANSFER SI ZE ~ CTRLBYT (1 BYTE)

* RAMFS09 FI RST ADDRESS ~ CPUSPD (2/1 BYTE)

* RAMFSOA: RAMF$OBDATA Sl ZE LAST ADDRESS (1/2 BYTES)

* RAMF$OC: RAMF$0D DATA ARRAY DATA ARRAY (32 BYTES)

* $AC - $EB RAM PROGRAM (64 BYTES)

* $EC $FF STACK (20 BYTES)

* TOTAL(128 BYTES)
ORG RAM

TEMP2B RVB 2

TEMPH RVB 1

TEMPL RVB 1
ORG DATSTRC

CTRLBYT RVB 1

CPUSPD RVB 1

LADDR RVB 2

DATA RVB RO Z

* *

KRRk b S b S R R R Rk S O S R R S R Rk kR R S R O O b O

AN1831 —Rev.2

20

MOTOROLA

Application Note
Example RAM Routine

* Program Al gorithm (User Mde Progranmi ng)

* 1. Initialize all variables and ports.

* 2. Moni tor COWM port for input of block of data to be programed and

* the start address. Load RAMwith the data array (up to 64 bytes), the
* start address and |l ength of data array.

* 3. Transfer the follow ng subroutines to

* RAM at address RAMPRG

* A. LDDATA

* B. MAI NPRG

* 4. Jump to first byte of main RAM program (RAMPRG) .

* 5. Execut e RAM program MAI NPRG and then return to comm

* port nonitoring | oop in RAM

*

* Program Al gorithm - Monitor Mdde Progranm ng

* 1. Monitor comm port for input of block of data to be

* programed and the start address. Load RAMwi th the data array (up to
* 64 bytes), the start address and length of data array.

* 2. Execut e RAM program MAI NPRG and then return to PTAO/ PTBO

* nmoni toring | oop in RAM

ER I R I I I R I I R R R I R I O R

* START OF PROGRAM

EE R R R R R R R R R R R R R R R R R I I R R I I I R I I R I R I I S R R

| FNE RAMPROG
ORG PRGSTRT
CLR COVPORT
MOV #$11, CONFI GL ; DI SABLE THE COP AND LVI

ER I I R I I R I R R S I R I R R

NAME: LDRAMPR

PURPCSE: LOADS MAI N RAM PROGRAM AND ALL NEC. SUBROUTI NES
ENTRY CONDI TI ONS: NONE

EXIT CONDI TI ONS: NONE

SUBROUTI NES CALLED:

EXTERNAL VARI ABLES USED:

* DESCRI PTI ON: EXECUTED QUT OF FLASH

Rk Ik R Sk b R R R O S O R R IR S S S R R I S b S R S R R S b O R R

E R R

LDRAMPR LDHX #RAVPRG ; STORE THE START LOCATI ON | N RAM
STHX TEMPH WHERE CODE | S TO BE TRANSFERRED
LDHX #XFRCODE ; LOAD 1ST ADDR OF FLASH CODE TO BE
NXTMOVE MOV X+, TEMP2B ; TRANSFER LCCATI ON | N RAM
PSHH ;
PSHX ; PUSH CURRENT FLASH ADDDR TO STACK
LDHX TEMPH ; LOAD ADDRESSES THAT HOLD THE DEST.
MoV TEMP2B, X+ ; TRANSFER DATA FROM TRANSFER LOCATI ON
NEXT STHX TEMPH
CPHX #RAMPRG+RAMPRSZ ; TO NEXT LOCATI ON AT RAM DESTI NATI ON
PULX ; POP CURRENT FLASH ADDR FROM STACK
PULH
BNE NXTMOVE ; 1 F NOT DONE, CONTI NUE
JwP RAMPRG
ORG XFRCODE ; START OF CODE TO BE TRANSFERRED TO RAM
ELSE
ORG RAMPRG ; START OF MONI TOR PROGRAMVWHICH | S ORG D
7 IN RAM
ENDI F

AN1831 — Rev. 2

MOTOROLA 21

Application Note

ER I I R I R I I R R R R

* NAME: LDDATA
* PURPOSE: LOAD RAM W TH USER S DATA AND START ADDRESS VI A THE COWM PORT;

* PROGRAMS AND THEN DUMPS DATA THAT |'S DOWNLOADED;, ONLY DUMPS DATA

* I N ROW SPECI FI ED | F NUMBER OF BYTES TO BE PROGRAMVED (DATASIZ) 1S 0.

* ENTRY CONDI TI ONS:

* EXI'T CONDI TI ONS:

* SUBROUTI NES CALLED: PRGFLSH, DUMPROW

* EXTERNAL VARI ABLES USED:

* DESCRI PTI ON: EXECUTED OUT OF RAM

* THE STRUCTURE OF THE DATA RECEIVED |'S AS FOLLOWS:

* LOCATI ON DESCRI PTI ON RAM LOC

) e e e

* 1 COUNT OF THE TOTAL NUMBER OF RAMF$08

* BYTES TO BE SENT (I NCL. THAT BYTE)

* 2-3 THE FI RST ADDRESS WHERE THE RAMF$09 t hru RAMF$0A
* FOLLOW NG DATA | S TO BE PROGRAMVED

* 4 NUVBER OF BYTES TO BE PROGRAMVED RAM+$0B

* 5- 68 ARRAY SPACE FOR DATA TO BE PROGRAMVED RAMF$O0C thru RAMF$4B
*

* |F A COUNT |'S USED THAT |'S GREATER THAN (PROGRAM LENGTH + 1)

* THEN THE ROUTI NE WLL HANG AFTER THE LAST PROGRAM BYTE | S SENT.

* CONTI NUOUSLY LOOPS LOOKI NG FOR NEW DATA ON THE COWM PORT. MUST RESET

* AFTER THE LAST ROW DOWNLOAD.

* |F A DATA ARRAY | S RECEI VED W TH A NUMBER OF BYTES TO BE PROGRAMVED OF $FF
* THEN PROGRAM W LL CONSTRUE TH' S AS A SI GNAL TO ERASE THE ENTI RE ARRAY. THI S
* WS THE MOST CONVENI ENT WAY TO | MPLEMENT BULK ERASE W THOUT HAVI NG TO HAVE
* A COVMAND BYTE | N THE DATA STRUCTURE.

* TRANSFERRED PROGRAM SI ZE

* e e e

* RAMF$08 TRANSFER S| ZE CTRLBYT (1 BYTE)

* RAMF$09 FI RST ADDRESS (VBB) CPUSPD (1 BYTE)

* RAMFSOA FI RST ADDRESS (LSB) LAST ADDRESS (MSB) (1 BYTE

* RAMF$0B DATA S| ZE (DATASI 2) LAST ADDRESS (LSB) (1 BYTE)

* RAMF$0C- RAMF$4B DATA ARRAY DATA ARRAY 64 BYTES)

KRRk kS b I R S I S R R S I R Sk S R R O S S R I S O b O R

L DDATA:
CLRH
LDX

WAl TRX: JSR
CPX
BNE
TSTA
BEQ

STORNOW STA
| NCX
DBNZ

CPARSE LDHX
STHX
MoV

MoV

#CTRLBYT
GET_PUT
#CTRLBYT

STORNOW

WAl TRX
, X

CTRLBYT, WAI TRX
CPUSPD
TEMP2B
#SPDSET, CPUSPD

LADDR+1, TEMPH

; PONT TO LOCATI ON OF TRANSFER SI ZE
; CALL TO ROUTI NE I N MONI TOR CODE
; BAD START - KEEP LOOPI NG FOR NON- 0

: STORE THE DATA | N RAM

: MOVE TO NEXT RAM LOCATI ON

; DEC. PROG Sl ZE CNTR (1st BYTE)

1 F ENTI RE PROG NOT LODED, CONT.

; $89

: MAI NTAIN FI RST BYTE | N TEMP2B

; PUT THE CPU SPEED SELECTED | N EQUATE
;. I NTO CPUSPD ADDR

: MAI NTAI N DATASI Z | N TEMP

AN1831 —Rev.2

22

MOTOROLA

Application Note
ROM Routines Source Code

Al X #ROWEI Z- 1 ;DO TH'S FOR BOTH A DUVP OR A PROGRAM
STHX LADDR ; "

LDHX TEMP2B ; "

LDA TEMPH ;I F SI ZE OF DATA TO BE PROCGRAMVED

BEQ DUMPROW ;1S 0 THEN BRANCH TO DUWP

COVA

BEQ ERASE1 ;1 F SIZE IS FFH, THEN BULK ERASE

JUSTPRG LDA #$FF
STA FLBPR
JSR PRGRNGE
BRA DUMPROW

ERASE1 BSET MASSBI T, CTRLBYT
JSR ERARNGE

DUVPROW LDHX TEMP2B
CLRA
JSR RDVRRNG
BRA LDDATA

| FNE RAMPROG

Rk b S kb R R R I S S R O S SR I S R R I R R S S R Rk b O

* | NTERRUPT AND RESET VECTORS

EE R R R R R R R R R R R R R R R R I I R I I I R I I S I R R S R O O R
ORG RSTVLCC

RSTVEC FDB PRGSTRT

SRRk Ik R S b R R R S O R O IR R S S R R o S O R R O R I b I b O O R

ENDI F

ROM Routines Source Code

The following five flowcharts provide graphic explanations of the ROM
routines source code.

AN1831 — Rev. 2

MOTOROLA 23

Application Note

GETBYTE
B

PORT A0
SET
?
NO

PURPOSE: GET A BYTE OF DATA ON PTAO. ATTEMPTS TO RECEIVE A
BYTE FROM THE EXTERNAL CONTROLLER VIA PORTAO. ONCE

CALLED, PROGRAM WILL REMAIN IN GETBYTE UNTIL ABYTE IS
STEII?E'I(':E:\'I{ED' SIGNAL TO START RECEIVING A BYTE IS A VALID (LOW)

NOTE: CYCLE PATH FOR EACH BIT RECEPTION MUST BE KEPT THE
SAME TO MAINTAIN A STEADY BAUD RATE.

LOAD $80
IN Acc

<<

y GBIT
CALL
GET_BIT

Y

ROTATE C BIT
INTO B7 OF Acc

YES

STOPBIT

Y

(RETURN

IF RESULT IS GOOD,
THEN Acc =BYTE
RECEIVED. PORT AO
CONFIGURED AS AN
INPUT.

Figure 1. GETBYTE

AN1831 —Rev.2

24

MOTOROLA

RDVRRNG)

Y
STORE
DESTINATION
IN TEMP1

v

INIT TEMP2 =
FF AS COMPARE
STATUS

y

INIT TEMPO =
FF AS INDEX
INTO DATA

-«

Application Note
ROM Routines Source Code

PURPOSE: READ AND/OR VERIFY A RANGE OF FLASH
MEMORY

H:X CONTAINS THE FIRST ADDRESS OF THE

RANGE; LADDR CONTAINS THE LAST

ADDRESS TO BE READ; Acc CONTAINS THE
DESTINATION OF THE FIRST BYTE OF THE
READ DATA (0 = PTAQ); DATA CONTAINS THE

DATA TO COMPARE THE READ DATA

AGAINST

o

YES

FADDR =

-

Yy RDVRRNGO010

GET FLASH
DATA FROM
FADDR

STORE FAILURE
($7E) INTO
TEMP2

Y
WRITE FLASH
DATAINTO
DATA

Y RDVRRNG020

CALL
PUT_BYTE

<
<€

y RDVRRNG030

ACCUMULATE
CHECKSUM

INC TEMP3 FOR
DATA POINTER

AN1831 — Rev. 2

LADDR+12
NO

GET PASS/FAIL
FROM TEMP2

GET CHECKSUM

Y
RETURN

Figure 2. RDVRRNG

MOTOROLA

25

Application Note

PRGRNGE b PRGSTP8 PURPOSE: PROGRAMS A RANGE OF
DELAY FOR ADDRESSES IN FLASH MEMORY. ALLOWS
RO PROGRAMMING OF A RANGE OF ADDRESSES,
WHICH DOES NOT HAVE TO BE ON PAGE
Y + ORGSTPY BOUNDARIES, EITHER BEGINNING OR END.
FOR EXAMPLE, PROGRAMMING $F001 TO
BUMP COP INCREMENT $F008 IS VALID. THIS IS TO PREVENT
DESTINATION TRYING TO PROGRAM A NON-FLASH
ADDRESS AND ADDRESS AND GETTING BACK A BAD
v BUFFPTR VERIFICATION.
SETIBIT DECREMENT
BUSFTF/;% o BYTECNT AND
COP LOOPING H:X CONTAINS THE FIRST
+ : ADDRESS IN THE RANGE; CTRLBYT
SPECIFIES THE PROGRAMMING
STAQKBE\T(EECNT MODE; LADDR CONTAINS THE LAST
BETWEEN ADDRESS TO BE READ; DATA
STARTADDR DESTADDR X\ YES CONTAINS THE DATA TO BE
AND END OF — PROGRAMMED; CPUSPD CONTAINS
e THE CPU SPEED FOR DELAY
ACCURACY
y PRGSTPL
SET COP
LOOPING
VARIABLE TO 6
SET PGM BIT ¥
IN FLCR NEXTPAGE
+ PRGSTP? ADD BTYOTECNT
DESTINATION
READ FLBPR ADDR
NO 0P LOOPING
¢ PRGSTP3 VARIABLE
FIR\éVTR I/I[EDTF?ESS Z Y
YES SET BYTECNT
OF RANGE TO PAGESIZ
y PRGSTP4
DELAY FOR
TNVS CLEAR PGM AND
HVEN IN FLCR
Yy PRGSTPS |
SET HVEN BIT > NO ~DEsT ADDR
INFLCR = LADDR?
+ PRGSTP6 ¥ PRGSTP10 YES
DELAY FOR CLEAR PGM BIT
TPGS IN FLCR PRGSTP13
RECONCILE
-
- Y PRGSTPIL STACK POINTER
FETCH DATA DE}-,’\?\)(HF OR l
AT BUFFPTR
'NTERB/;\\LA RETURN
Y Y PRGSTP12
STORE DATA CLEAR HVEN BIT
AT CURRENT INFLCR
DESTINATION
ADDRESS

Figure 3. PRGRNGE

AN1831 —Rev.2

26 MOTOROLA

Application Note
ROM Routines Source Code

(DELNUS) PURPOSE: DELAY FOR N*12 US FOR fgp >= 1 MHZ;
S D = (DELAY TIME[US)/12) IN X, C = (fop[MHZ]*4)

IN Acc CYCLES = 5+(DELAY/12)* 3(4fgp-3)+9 =
Y 5+DELAY*fqp
SUBTRACT 1
FROM CPUSPD
(Acc)
X CONTAINS THE TIME/12
- OF DELAY (IN MICROSECONDS.);
o NXTX Acc CONTAINS CPUSPD (CPU SPEED X 4);
v CPU SPEED MUST BE >= 1 MHZ
PUSH Acc
ONTO STACK
Y
SUBTRACT 2
FROM CPUSPD
(Acc)
Y
DECREMENT Acc

l

YES

POP CPU SPEED
FROM STACK

Y
DECREMENT X
REGISTER
(DELAY VAR)

NO

YES

RETURN

Figure 4. DELNUS

AN1831 — Rev. 2

MOTOROLA 27

Application Note

(ERARNGE) PURPOSE: ERASE A RANGE OF ADDRESSES IN FLASH MEMORY.
PRESERVES THE CONTENTS OF H:X (ADDRESS PASSED).
Y
SRS ADDRESS H:X CONTAINS AN
ADDRESS IN THE RANGE
TO BE ERASED; RANGE
v SIZE SPECIFIED
BY CONTROL BYTE
SET ERASE BIT
IN FLCR

SET DELAY SET DELAY
LOOP CNTR LOOP CNTR
FOR5 FOR 20
Y A
BUMP COP Y
CALL
SET MASS BIT v DELNUS
IN FLCR TNVHLQ
CALL .
- IN H:X AND
- DELNUS CPUSPD
Y WITH IN Acc
TERASEQ
READ THE IN H:X AND
BLOCK PROTECT| CPUSPD ‘
REGISTER IN Acc g
\

/
CLEAR HVEN BIT

DECREMENT IN FLCR
LOOP COUNTER
i Y
RESTORE
ADDRESS
LOOP NO PASSED FROM
COUNTER STACK TO H:X
WRITE TO THE =0?
BLOCK PROTECT]
REGISTER
_,* RETURN
WRITE
CONTENT OF BUMP COP
Acc TO
ADDRESS
SPECIFIED IN
H:X \
17 CLEAR ERASE
CALL AND MASS BITS
DELNUS INFLCR
WITH
TNVSQ IN
H:X AND
CPUSPD IN
Acc

SET HVEN BIT
INFLCR

Figure 5. ERARNGE

AN1831 —Rev.2

28 MOTOROLA

Application Note
ROM Routines Source Code

ROM Routines Source Code

Rk b S Sk b R R I O S R R R S R Rk Sk R R S S S S S I O R

FI LE NAME: MAI NPR. ASM
PURPCSE: To provide FLASH erase, program and verify routines
to reside in ROM
TARGET DEVI CE: MC68HC908GR8, MC68HCI08KX8, MC68HC908JL3/JK3 and the MC68HCI908JB8

MEMORY USACE - RAM 4-36 BYTES, DEPENDI NG ON DATA PASSED
ROM 364 BYTES

ASSEMBLER: MCUEZ
VERSION: 1.0.5

PROGRAM DESCRI PTI ON:

This program contains a structure of routines to facilitate FLASH progranm ng.
These routines, which are individually callable, are intended to reside in ROM

for the use of a user program a test/burn-in program or for devel opment/ programm ng
tools. This set of routines is included, along with definition files, by the project
file 9GRBALLROM ASM

AUTHOR: Grant Witacre
LOCATION: Austin - Oak Hill, Texas

UPDATE HI STORY:

REV AUTHOR DATE DESCRI PTI ON OF CHANGE

0.0 G VWH TACRE 10/ 05/ 98 Initial rel ease

0.1 G VWH TACRE 02/ 17/ 99 MODI FI ED FOR THE SST FLASH
0.2 G VWH TACRE 08/ 23/ 99 MODI FI ED GETBYTE FOR 9600

BAUD @ 2. 4576 MHZ

GENERAL CODI NG NOTES:
Bit nanes are | abel ed with <port nanme><bit nunber> and are used i n the commands t hat
operate on individual bits, such as BSET and BCLR. A bit nane foll owed by a dot

* indicates a |label that will be used to forma bit nask.
ER IR I I I I I I R R IR I R I IR S IR R IR I IR R IR R I R R R I IR I I R R R R R R I S R R R I I I I I I I b I I I I I I I I b b I A R R b b b

LR I N S S T R N N N N N N N S T T T R N

KRRk Ik Rk Sk b I R R S I O R R R R Rk kR R R S O S O R R I b b O S

* | NCLUDED FI LES

KRRk b S Sk b R R S S R R R S R Sk R I S O O R S S R R O

* | NCLUDE " E: \ MVDS\ GR8\ SSTROM H908GR8. FRK"
ER IR I I I I I I R R IR I R I IR S R R R IR R R IR R I R R R I IR I R R R R R I S R I IR I I I I I I I I I b I b I I I I I S b b I I I R R b b Y
* EQUATES

SRRk Ik S Sk b I R R U S S R O R SRR S S kR R S b O R R S S R O

* PROGRAMM NG TI MES I N ps
* FOLLOW NG DEFINED I N . FRK FI LE

* TPROG EQU 40 ; FLASH Byt e Program Ti nme

* TERASE EQU 1000 ; FLASH Page Erase Tinme

* TMERASE EQU 4000 ; FLASH Mass Erase Tine

*TNVS EQU 10 ; FLASH PGV ERASE to HVEN Setup Tine

AN1831 — Rev. 2

MOTOROLA 29

Application Note

*TPGS EQU 5 ; FLASH Program Hol d Ti me

* TNVH EQU 5 ; FLASH Hi gh- Vol tage Hold Ti ne

* TNVHL EQU 100 ; FLASH Hi gh- Vol t age Hol d Ti ne (Mass Erase)
* TRCV EQU 1 ; FLASH Return to Read Tine

* TI MES REPRESENT VALUES THAT ARE PASSED TO THE DELAY ROUTI NE, WHI CH
* DELAYS FOR X 12 ps FOR VALUES PASSED. FOR TERASE AND TMERASE, THE
* ROUTINE 1S CALLED 5 AND 20 (12 us*17*20=4080 ps) TI MES,

* RESPECTI VELY, WTH A BUMP OF THE COP BEFORE EACH CALL

ECALLS EQU 5

MECALLS EQU 20

TPROGQ EQU 3 ; FLASH Program Ti me

TERASEQ EQU 17 ; FLASH Bl ock Erase Tine

TMERASEQ EQU 17 ; FLASH Mass Erase Tine

TNVSQ EQU 1 ; FLASH PGV ERASE to HVEN Setup Tine
TPGSQ EQU 1 ; FLASH Program Hol d Ti me

TNVHQ EQU 1 ; FLASH Hi gh- Vol t age Hol d Ti ne

TNVHLQ EQU 8 ; FLASH Hi gh- Vol t age Hol d Ti ne (Mass Erase)
TRCVQ EQU 1 ; FLASH Return to Read Tine

SRRk b S S b R Rk O R O R R R I Rk Sk R R S O R R I O b
* ROUTI NES
SRR b S S b R R I S I R O R R I Rk kA I O R Gk S S O

SRRk b S Sk b R R R S S O R SRR I S S I R S O S O R R I S S b S O O

* NAMVE: GETBYTE
PURPOSE: Get a byte of data on PTAO
Entry Conditions: Port AO configured as an i nput.
Exit Conditions: Acc=byte received.
If break received or result bad then send break and
junp back to start.
Port AO configured as an i nput.

SUBRQUTI NES CALLED: GET_BIT
VARI ABLES READ:
VARI ABLES MODI FI ED:
STACK USED: 4
S| ZE: 20 BYTES
DESCRI PTI ON: EXECUTED QUT OF ROM
Attenpts to receive a byte fromthe external controller via PortAO.
Once called, programw |l remain in GETBYTE until a byte is received
Signal to start receiving a byte is a valid (low) start bit.
NOTE: Cycle path for each bit reception nmust be kept the same to maintain
a steady baud rate.
*BI TTI M NG=9+(17+10*23) =256 CYCLES@2. 4576 MHZ=104 ps =9600 BAUD

R S S b S R R Sk S kO kS R Ik S R R o b b S S R O O R S R R

E I T S R B S . N N N N S

GETBYTE:
BRSETO , PTA, GETBYTE ;Waiting for start edge.
JSR GET BIT ;try to receive a full start bit.
BCS GETBYTE ; Success?
LDA #$80 ;initialize receiver.
GBI T: ;got start bit, now get byte.
JSR GET_BIT ;5

AN1831 —Rev.2

30 MOTOROLA

Application Note
ROM Routines Source Code

RORA ;1 bit into Acc
BCC &BIT ;3 get next bit
* ; baud cal cul ation
STOPBI T:
JSR CET BIT ;1 ook for stop bit
RTS

ER I R I I I R I I S I R R I R I R R R

EE R R R R R R R R R R R R R R R R R R R I I I R I I S I R I I R I O I R R

*

E I S I S S T R B N I S T

*

NAME: RDVRRNG
PURPCSE: Read and/or Verify a range of FLASH nenory
ENTRY CONDI TIONS: H: X contains the first address of the range;
LADDR contain the |ast address to be read;
Acc contains a Boolean to see if read data
goes to PTAO (0=PTAO, else Data Array)
DATA contains the data to conpare the read data agai nst
EXIT CONDITIONS: C bit is set if good conpare; Acc contains checksum
DATA contains read FLASH data
SUBRQUTI NES CALLED:
VARI ABLES READ: LADDR, DATA ARRAY
VARI ABLES MODI FI ED: DATA ARRAY
STACK USED: 6
S| ZE: 63 BYTES
DESCRI PTI ON: EXECUTED OQUT OF ROM ALTHOUGH THI S ROUTI NE SERVI CES THE COPR,
THERE COULD STILL BE A COP TI ME OUT UNDER CERTAI N CONDI TI ONS. THESE CONDI TI ONS
ARE: 1) IN USER MODE, 2) COP ENABLED, 3) USING THE SHORT COP TI MEQUT, 4) NOT USI NG
THE PLL SUCH THAT f op = CGWXCLK/ 4

SRRk b R Sk b R R R I R O R R I R Rk I R R S S S S S R IR I b

RDVRRNG:
PSHA ; (A) SAVE DESTI NATI ON FLAG ON STACK AS 4, SP
CLRA ; LOCAL VARI ABLE FOR CHECKSUM STARTS AT 00
PSHA ; (B) SAVE ON STACK AS 3, SP
; LOCAL VARI ABL FOR | NDEX | NTO DATA STARTS AT 00
PSHA ; (C) SAVE ON STACK AS 2, SP
COVA ; LOCAL VAR ABLE FOR VERI FY STATUS (FF = GOOD)
PSHA ; (D) SAVE ON STACK AS 1, SP
RDVRRNGD10:
STA $FFFF ; BUWP THE COP
LDA X ; LOAD CONTENT OF FLASH ADDRESS | NTO ACC.
TST 4,SP ; CHECK DESTI NATI ON FLAG
BEQ RDVRRNGD20 ; SKI P COVPARE | F DESTI NATI ON |'S PTAQ
PSHX ; (E) STORE FADDR FOR LATER
PSHH L (F)
LDX 4, SP ; GET | NDEX | NTO DATA FROM STACK
CLRH
CVP DATA X ; COMPARE ADDR NOW I N X SO COVPARE CONTENT
BEQ RDVRRN®15 ;I F EQUAL THEN KEEP GO NG ..
STA DATA X ; WRI TE FLASH DATA THAT IS DI FFERENT TO RAM
LDX #S$7E : FAI LED VERI FI CATI ON SO CLEAR VERI FY STATUS
STX 3,SP ; MUST KEEP DATA | N ACC FOR CHECKSUM BELOW
RDVRRNGD15:
PULH ; (F') GET FADDR BACK

AN1831 — Rev. 2

MOTOROLA 31

Application Note

PULX (E)
BRA RDVRRNGO30
RDVRRNG020: : NOT COMPARI NG, JUST DUMPI NG
JSR PUT_BYTE Rl TE DATA TO PORT AO. ..
 PUT_BYTE SAVES A, X, AND H
RDVRRNGO30:
ADD 3, SP . ADD VALUE OF CURRENT BYTE TO CHECKSUM
STA 3,SP . MAI NTAI N AS RUNNI NG SUM
INC 2,SP : | NCREMENT | NDEX | NTO DATA
CPHX LADDR : COMPARE SOURCE ADDR TO THE LAST ADDRESS
BHS NOMD 1 F NOT YET DONE, LOOP FOR ANOTHER
AlX #1 ;| NCREMENT SOURCE ADDRESS
BRA RDVRRNGO10
NOMDO PULA - (D) GET PASS/ FAIL | NFO | NTO
TAP © CARRY BI T
PULA - (C) TRASH | NDEX | NTO DATA
PULA - (B') RETURN CHECKSUM | N ACC.
AS #1 - (A") TRASH DESTI NATI ON FLAG
RTS

* %

* %

*

L R S R I R I R

*

* %

KRRk b S b S I R Rk S O R O SR O S R R S S b O R S O O R

KRRk b S b S R R R kO Sk O SRR S S R R Rk b O O R I S R R O

NAME: PRGRNGE
PURPOSE: Prograns a range of addresses in FLASH nenory
ENTRY CONDI TI ONS: H: X contains THE FI RST address in the range;
CTRLBYT contains the Control Byte that specifies
the programmi ng node; LADDR contains the |ast address
to be read; DATA contains the data to be programed
EXIT CONDI TI ONS: Next address in H X
SUBROUTI NES CALLED: DELNUS
VARI ABLES READ: CONTROL BYTE, CPUSPD, LADDR, DATA ARRAY
VARI ABLES MODI FI ED:
SI ZE: 170 BYTES
STACK SI ZE (I NCLUDI NG CALL): 7 BYTES
DESCRI PTI ON: EXECUTED OQUT OF ROM
Al l ows passing of a range of addresses to PRGRNGE, which does not have
to be on row boundaries, either beginning or end. |.e., passing $F001 to
$F008 is valid. This is to prevent trying to program a non- FLASH address.

ER Rk b S b S I R Ik b S R R I S S Rk b I O O R R S b O O

PRGRNGE:
SEl : MASK | NTERRUPTS SO THAT DELAYS ARE NOT
. AFFECTED
CLRA ; STORES | NDEX | NTO DATA ARRAY
PSHA . (A) | NDEX | NTO DATA |'S ON STACK
PSHX : (B) SAVE FADDR SO THAT I T IS NOT DESTROYED
PSHH (0
TXA . GET (FADDR MODULUS ROWS! ZE)
LDX #RONSI Z
CLRH - H GH BYTE CAN BE | GNORED BECAUSE ROWSI ZE

;IS ALWAYS A POAER OF TWO AND 256 OR LESS.
; |'T MUST BE | GNORED SO THAT RESULT COF DI VI DE
; WLL FIT I N ONE BYTE.

AN1831 —Rev.2

32

MOTOROLA

Application Note
ROM Routines Source Code

DI V : DI VI DE LEAVES REMAI NDER (MODULUS) I N H
PSHH : (D) PUSH REMAI NDER | N H ONTO STACK
TXA : MOVE ROWBI ZE TO ACC
suB 1, SP : SUBTRACT REMAI NDER TO GET #BYTES TO PROGRAM
PULH (D)PULL REMAI NDER FROM STACK AND THROW AVAY
PULH . (C) GET FADDR BACK FROM STACK
PULX 1 (B)
PSHA : (B) STORE #BYTES TO END OF ROW ON STACK
PSHA :(C©) RESERVE A STACK LOC. FOR COP LOOPI NG VAR.
3, SP = COP LOOPI NG VARI ABLE
4, SP = #BYTES TO END OF ROW
5, SP = | NDEX | NTO DATA ARRAY
PRGSTPL1:
STA $FFFF - BUMP COP
LDA #3$06 : SET LOOPI NG VARI ABLE TO ALLOW FOR COP BUMP;
STA 1, SP - NEED TO TURN OFF PGM AND HVEN OCCASI ONALLY TO
© BUMP COP
LDA #PGM “SET PGV BI T
ORA FLCR
AND #$F9 : ($FF- MERASE. - ERASE.)
- MAKE SURE ERASE BI TS ARE OFF
STA FLCR “WRI TE THI'S TO THE FLASH CONTROL REG.
PRGSTP2 LDA FLBPR READ FROM BLOCK PROT. REG.
PRGSTP3:
| FEQ TESTMOD
LDA . X
ENDI F
| FNE TESTMOD
STA , X :WRI TE TO ANY FLASH ADDRESS W THI N THE ROW
ENDI F
: TO BE PROGRAMVED W TH ANY DATA
PSHH . (D)
PSHX , (B)
PRGSTP4 LDX #TNVSQ - DELAY FOR TNVS

LDA CPUSPD
BSR DELNUS

PRGSTPS5 LDHX #FLCR ; SET THE HVEN BI T I N FLCR
LDA , X
CRA #HVEN.
STA , X

PRGSTP6 LDX #TPGSQ ; DELAY FOR TI ME TPGS

LDA CPUSPD
BSR DELNUS

PULX (E)
PULH (D

SRRk b S S b I R R O S S R R I I S S R R S b S O R R S b b O O

AN1831 — Rev. 2

MOTOROLA 33

Application Note

* NEED TO PROGRAM 6 BYTES, TURN OFF PGM AND/ OR HVEN, BUWP COP, PROGRAM ANOTHER
* 6 BYTES, THEN REPEAT PROCESS UNTI L FI Nl SHED W TH RANGE

EE R R R R R R R R R R R R R R R R R I R I I I R I I I I R R I I R O I R R

PRGSTP7 PSHH . (D)
PSHX , (B)
1, SP = ADDR(LSB)
:2,SP = ADDR(MSB)
3, SP = COP LOCPI NG VARI ABLE
4, SP = #BYTES TO END OF ROW
: 5, SP = | NDEX | NTODATA ARRAY
CLRH : GET 0: BUFFPTR | NTO H: X
LDX 5, SP : GET THE | NDEX | NTO DATA ARRAY
LDA DATA, X : LOAD BYTE TO PROG FROM DATA+BUFFPTR
PULX :(E') POP LO BYTE OF ADDR BACK | NTO X
PULH (D)
| FEQ TESTMOD
LDA , X
ENDI F
| FNE TESTMOD
STA , X - STORE DATA TO ADDR SPEC. BY H X
ENDI F
PSHH (D)
PSHX ; (B)
PRGSTP8 LDX #TPRORQ - DELAY FOR TPROG
LDA CPUSPD
BSR DELNUS
PULX S (E)
PULH (D)
PRGSTPO:
Al X #3$01 : | NCREMENT THE DESTI NATI ON ADDRESS
I NC 3,SP | NCREMENT THE PO NTER | NTO DATA
DEC 2,SP : DECREMENT THE BYTE COUNTER
DEC 1, SP : DECREMENT COP LOOPI NG VARI ABLE
CPHX LADDR : CHECK FOR END OF RANGE
BHI PRGSTP10 “EXIT LOOP | F PAST END OF RANGE
TST 2,SP : CHECK FOR END OF ROW
BEQ PRGSTP10 “EXIT LOOP | F DONE W TH ROW
TST 1, SP
BNE PRGSTP7 - COP VAR = 0?
BSR CLR P H :
TAX
BRA PRGSTP1 :
PRGSTP10:
BSR CLR P _H - CALL RTN TO CLEAR PGM AND HVEN
NEXTROW - DONE WTH ROW GET READY TO EXI T
1, SP = COP LOOPI NG VARI ABLE
2, SP = #BYTES TO END OF ROW
3, SP = | NDEX | NTO DATA ARRAY
ADD 2,SP : ADD BYTES PROGRAMVED TO LOW BYTE
AN1831—Rev. 2
34 MOTOROLA

TAX
PSHH
PULA
ADC
PSHA
PULH

LDA
STA
Al X

CPHX
Al X
BLO

PRGSTP13:
PULA
PULA
PULA

DONEPRG RTS

#0

#ROWSI Z
2, SP
#-1

LADDR
#1
PRGSTP1

Application Note
ROM Routines Source Code

: (D) CORRECT HI GH BYTE FOR CARRY, |F ANY
(D)

; #BYTES TO END OF ROW | S ROWSI ZE

; DECREMENT CURRENT ADDRESS BY 1 TO COWP.
; TO LAST ADDR

; COVPARE FADDR TO LADDR

; PROGRAM ANOTHER ROW | F LESS OR EQUAL

; NEXT 3 INST. TAKE > 1 ps.

; (C) REMOVE COP LOOP VARI ABLE

; (B') REMOVE #BYTES TO END OF ROW

; (A') REMOVE | NDEX | NTO DATA ADDRESS

* FOLLOW NG LOCAL SUB- ROUTI NE CLEARS PGM DELAYS, THEN CLEARS HVEN.

CLR_P_H PSHH

PSHX
LDHX
LDA
EOR
STA
PRGSTP11:
LDX
LDA
BSR
PRGSTP12:
LDHX
LDA
EOR
STA
PULA
PULH
RTS

#FLCR

. X
#PGM

. X
#TNVHQ

CPUSPD
DELNUS

#FLCR
, X
#HVEN.
, X

; (D)
(B
" CLEAR PGM BI T

; DELAY FOR TNVH

; CLEAR THE HVEN BI T

 (E)
(D)

SRRk Ik R Sk b R R R I S S R I I S S I R I O O R R S

AN1831 — Rev. 2

MOTOROLA

35

Application Note

ER I I R I R I I R R R R

NAMVE: DELNUS

PURPCSE: Del ay N ns

ENTRY CONDI TI ONS: X CONTAINS THE TI ME/ 12 OF DELAY (I N ns).
A CONTAINS THE CPU SPEED X 4 (2 BITS OF PRECI SI ON)

EXI'T CONDI Tl ONS:

SUBROUTI NES CALLED:

VARI ABLES READ:

VARI ABLES MODI FI ED:

SI ZE: 10 BYTES

STACK USED (I NCLUDI NG CALL): 3 BYTES

DESCRI PTI ON: EXECUTED OUT OF ROM

Del ay Routine for fop >= 1 Mz, Delay >= 12 ns

(delay time[pus]/12) in H X (fCP[I\/Hz]*4) in Acc

If fop > 1 then

CYCLES = 5+Del ay/ 12[3(4f op- 3) +9] = 5+DELAY*f p

| fCP = 1 then CYCLES = 5+12(DELAY/ 12) = 5+DELAY

* where delay in ps and fop in Mz

Rk b R kb R R R I S S R O IR O S R Rk R SR O S S O R I b b O S R

E I T R S B R T R B R D I

DELNUS: DECA ;1 CYCLE
NXTX PSHA ;2

DECA 71

DECA 71

DBNZA * ;3

PULA ;2

DBNZX NXTX ;3

RTS 4

SRRk b R S b R R O S R O R R R S S A R S b S O Rk S S R R

SRRk b S S bk R R R S S R R R S S R R I S O A O S R S S R S

* NAME: ERARNGE

* PURPCSE: Erase a range of addresses in FLASH nmenory
* ENTRY CONDI TIONS: H X contains an address in the range to be erased; range size
* specified by Control Byte
* If b6 = 1 then nmass erase, otherw se erase
* 1 page (64 bytes for the GR8).
* EXIT CONDI TI ONS: Preserves the contents of H: X (address passed)
* SUBROUTI NES CALLED: DELNUS
* VARl ABLES READ: CTRLBYT, CPUSPD
* VARl ABLES MODI FI ED:
* STACK USED: 5
* SIZE: 99 BYTES
* DESCRI PTI ON: Does not check for a blank range before (to see if erase
* is necessary) or after (to see if successful erase)
R S Ik I R I R I I R R I R I I R R I R S I R S I S R I S R R Sk S
ERARNGE:
SEI
PSHH ; KEEP ADDRESS PASSED
PSHX
CLRA ; SET ERASE BI T, AND

ORA #ERASE.

AN1831 —Rev.2

36 MOTOROLA

Application Note
ROM Routines Source Code

BRCLR MASSBI T, CTRLBYT, AMBS
ORA #NMASS. ; MASS BI T | F NECESSARY
AMBS: STA FLCR
ERABLK LDA FLBPR ; READ THE BLOCK PROTECT REG STER
| FEQ TESTMOD ; WRI TE TO ANY ADDRESS | N ERASE RANGE
LDA FLBPR
LDA , X
ENDI F
| FNE TESTMOD
BRCLR MASSBI T, CTRLBYT, NOBLWR
STA FLBPR
NOBLWR STA , X
ENDI F
LDX #TNVSQ ; DELAY FOR TNVS
LDA CPUSPD
BSR DELNUS
LDHX #FLCR ; SET THE HVEN BI T I N FLCR
LDA , X
ORA #HVEN.
STA , X
BRCLR MASSBI T, CTRLBYT, RAERASE
LDA #MECALLS ; DELAY LOOPS FOR TMERASE
BRA ERADEL ; R
RWERASE LDA #ECALLS ; DELAY LOOPS FOR TERASE
ERADEL PSHA ; STACK | NCREMENT COUNTER
BUMPCOP STA $FFFF ; BUVP COP
LDX #TERASEQ ; SAVE FOR TERASEQ AND TMERASEQ
LDA CPUSPD
BSR DELNUS
DEC 1, SP
BNE BUMPCOP
PULA ; PULL | NCREMENT CNTR OFF STACK
STA $FFFF ; BUVP COP WHEN DONE DELAYI NG
LDHX #FLCR ; CLEAR THE ERASE BI T
LDA , X
EOR #ERASE.
AND #($FF- MASS.) ; CLEAR MASS BI T
STA , X
BRCLR MASSBI T, CTRLBYT, PGSTUP
LDHX #TNVHLQ ; DELAY FOR TNVHL
BRA STUPDEL ; R
PGSTUP LDHX #TNVHQ ; DELAY FOR TNVH
STUPDEL LDA CPUSPD
BSR DELNUS

AN1831 — Rev. 2

MOTOROLA

37

Application Note

LDHX #FLCR . CLEAR THE HVEN BI T
LDA | X
EOR #HVEN
STA | X

XERARNG PULX . RESTORE ADDRESS PASSED
PULH THESE 3 | NST. DELAY FOR
RTS . AT LEAST 1 ps (TRQV)

EE R I I R I I O I R I I R R R R

NOTE: The following routines are resident in the MC68HC908KX8 only.

Rk Ik R Sk b R R R O Sk R R R I S S R R I O S R R S S R R b

ROUTI NE NAME: | CGTRI M

PURPCSE: AN | CG TRI M ROUTI NE BASED ON THE MEASUREMENT OF THE

LENGTH OF A BREAK SI GNAL SENSED ON PTAO OR PTB4/ RXD.

ENTRY CONDI Tl ONS: ICG IS ENABLED (I CGON IS SET); | NTERNAL CLOCK | S SELECTED
(CS IS CLEARED); ACC | S CLEARED TO SELECT PTB4/ RxD TO MONI TOR
BREAK SI GNAL, ACC |'S NON-ZERO TO SELECT PTAO; PORT USED HAS
BEEN CONFI GURED I N SWAS AN | NPUT AND | N HW FOR NRZ
COMMUNI CATI ON.

EXIT CONDI TI ONS: CARRY BIT IS SET I F | CG WAS TRI MMED SUCCESSFULLY;
MONI TOR PORT CONFI GURED AS AN | NPUT

SUBROUTI NES CALLED: NONE

VARI ABLES READ: PTA ORPTB

VARI ABLES MODI FI ED: | CGTR, | CGCR, | CGWR

STACK USED: 1 BYTE

SI ZE: 67 BYTES

DESCRI PTI ON: EXECUTED OUT OF ROM THI' S ROUTI NE CHECKS TO SEE HOW

MANY CYCLES ARE MEASURED DURI NG A BREAK SI GNAL (10 LOW BITS)

SENT AT 9600 BAUD BY A HOST AND ADJUSTS I TS TRIM AND MULTI PLI ER

REGQ STERS. | F THE BREAK SI GNAL | S MORE THAN 25% VARI ATI ON FROM

VWHAT |'S EXPECTED (.78-1.30 pys @9600), THEN I CG TRI MM NG W LL

NOT BE PERFORMED. THI S | CG ACCURACY LIMT IS CONSI STENT WTH

* THEEXTENT OF THE| CG SABI LI TYTOFI NE- TUNETHETRI MREG STER.

SRRk b R S b I Rk I S S O R SRR I S S R S O Rk S S R R S

L I T N N N N N R N R N

| CGTRI M
MOV #$20, | CGWR ; SET ICG TO 307.2 KHZ * 32 = 9.8304 M{Z

BRCLR | CGS, | CCCR, * WAL T FOR CLCCK TO STABI LI ZE
CLRX
CLRH
TSTA ; SEE | F PTAO OR PTB4 IS USED
BEQ MONPTB4 ; BRANCH | F BLANK TO MONI TOR PTB4
BRSET O, PTA, * WAL T FOR BREAK SI GNAL TO START

* FOLLOW NG LOOP IS EXECUTED UNTIL THE END OF THE BREAK SI GNAL. THE BREAK

* SIGNAL LASTS 10 BIT TIMES. |F COVMMUNI CATING AT f o/ 256 BPS, THEN 10 BI T

* TIMES IS 2560 CYCLES. EACH TI ME THROUGH THE LOOP IS 10 CYCLES, SO WE

* EXPECT TO EXECUTE THE LOOP 256 TIMES |F THE KX8 IS I N SYNC SERI ALLY WTH

* THE HOST. |F VE STAY IN THE LOOP FOR > 256 LOOP CYCLES, THEN THE KX8

*

MUST BE RUNNI NG FASTER THAN EXPECTED, AND NEEDS TO BE SLOWNED DOMN. | F WE

AN1831 —Rev.2

38 MOTOROLA

L R B S . T R R B R

*

9600

*

CHKPTAO BRSET

REPRESENTS AN ERROR OF 1/256

256 (0100H)

0, PTA, BRKDONE

AX #1
BRA CHKPTAO
MONPTB4 BRSET 4, PTB, *
CHKPTB4 BRSET 4, PTB, BRKDONE
AX #1
BRA CHKPTB4
BRKDONE PSHH
PULA
TSTA
TXA
BEQ SLOW
FAST COW #$40
BGE OOR
ADD #$80
BRA | CGDONE
SLON CWP #$C0
BLT OOR
SUB #$80
| CGDONE STA | CGTR
| FEQ TESTMOD
BSR | CGTEST
ENDI F
EXI TTRM SEC
RTS
OR CLC
RTS

AN1831 — Rev. 2

M N COUNTS

Application Note
ROM Routines Source Code

STAY IN THE LOOP FOR < 256 LOOP CYCLES THEN THE KX8 MUST BE RUNNI NG SLOVER
THAN EXPECTED AND NEEDS TO BE SPEEDED UP. THE AMOUNT THAT WE CHANGE THE

CPU SPEED IS EQUAL TO THE NUMBER OF LOOP CYCLES OVER OR UNDER 256. SO I F

VWE GO THROUGH THE LOCOP 240 TI MES, THEN VWE ARE RUNNI NG

(256-240)/ 256 = 6.25% FAST. EACH | NCREMENTAL CHANGE WE MAKE TO THE TRI M REQ STER
(ICGTR) WLL MAKE A 0.195% CHANCE TO THE | NTERNAL CLOCK. THAT | S, | NCREMENTI NG
THE REG STER BY ONE OVER THE DEFAULT VALUE OF $80 STORED THERE W LL

DECREASE THE | NTERNAL CLOCK BY 0. 195% AND VI CE VERSA.

NOW EACH EXECUTI ON OF THE LOOP OVER OR UNDER WHAT | S EXPECTED (256 TI MES)
.391% ERROR. SO WE' LL NEED TO DOUBLE THE

NUMBER OF LOOP CYCLES AND USE THI S NUMBER TO CORRECT THE TRI M REG STER.

OUR PRECI SION FOR TRI MM NG | S THEREFORE 0. 391%

COUNTS RECEI VED AT DEVI CE BAUD RATE OF 9600 (f op = 2.4576 MHZ):
BAUD RATE EXPECTED COUNT

MAX COUNTS

| CGVR VAL

320 (0140H) $20

192 (00COH)

;(5) GET OQUT OF LOCOP | F BREAK | S OVER
; (2) 1 NCREMENT THE COUNTER
; (3) GO BACK AND CHECK SI GNAL AGAIN

WAL T FOR BREAK SI GNAL TO START

;(5) GET QUT OF LOOP | F BREAK IS OVER
; (2) 1 NCREMENT THE COUNTER

; (3) GO BACK AND CHECK SI GNAL AGAI N

; PUT H GH BYTE | N ACC AND WORK W TH A: X

;1 F MSB OF LOOP CYCLES = 0, THEN BREAK TAKES TOO
; FEW CYCLES THAN EXPECTED, SO TRI M BY SPEEDI NG

X uP f oP:

; SEE | F BREAK | S W THI N TOLERANCE

; DON'T TRIMI F OUT OF RANGE

; BREAK LONGER THAN EXPECTED, SO SLOW DOMWN fCP

y SEE | F BREAK | S W THI N TOLERANCE
;DON'T TRRM I F OUT OF RANGE

; SET CARRY S| GNI FYI NG TRI M OCCURRED

; CLEAR CARRY SI GNI FYI NG NOT' TRI MVED

MOTOROLA

39

Application Note

KRRk Ik b S b R Rk O S O AR R O O R Rk kO R S S S R I I b O

b S S R B

*

NAME: | CGTEST

PURPCOSE: Fol I owi ng tests the above 1 CG settings to see if the internal clock is set
at the desired rate. Internal clock rate is 16x frequency sensed at bit 4 of port A
ENTRY CONDI TI ONS: NONE

EXIT CONDI TIONS: | RQ PULLED LONV TO EXI T, PTA4 SET AS QUTPUT

SUBROUTI NES CALLED: NONE

VARI ABLES READ:

VARI ABLES MODI FI ED: PTA, DDRA

STACK USED: 0

S| ZE: 13 BYTES

DESCRI PTI ON: EXECUTED QUT OF ROM

Rk b Sk Sk b R R I S I R R R R Sk R R S S S R Rk kO b S

| CGTEST BSET 4, DDRA ;bit 1 set as output
Bl TOFF BCLR 4, PTA ;4 cycles
Bl L EXI TLP ;3 cycles
NOP ;1 cycle
Bl TON BSET 4, PTA ;4 cycles
NOP ;1 cycle
BRA Bl TOFF ;3 cycles
EXI TLP RTS ; 16 cycles

SRRk b R Sk b R R R S I R R R R Rk Sk R O S O R R R S S S b O R

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

@ MOTOROLA

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334
Technical Information Center: 1-800-521-6274

HOME PAGE: http://www.motorola.com/semiconductors/

© Motorola, Inc., 2001

AN1831/D

	Introduction
	FLASH Overview
	The Routines
	GETBYTE
	RDVRRNG
	PRGRNGE
	ERARNGE
	DELNUS

	Defined Constants
	Variables
	The Data Structure
	Addresses of Routines
	MC68HC908KX8 Trim Routine
	Typical Routine Calls
	Example RAM Routine
	ROM Routines Source Code
	ROM Routines Source Code

